
The value of $\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $ is equal to
$
a.{\text{ 5}}\left( {2n - 9} \right) \\
b.{\text{ 10}}n \\
c.{\text{ 9}}\left( {n - 4} \right) \\
d.{\text{ }}\left( {n - 2} \right) \\
$
Answer
523.2k+ views
Hint – In this question use the property of combination which is given as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so, use this property to reach the answer.
Given equation is
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $……………. (1)
As we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ (combination property)
So, ${}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}$
Now, we know that $r! = r\left( {r - 1} \right)!{\text{ \& }}\left( {n - r + 1} \right)! = \left( {n - r + 1} \right)\left( {n - r} \right)!$
So substitute these values in equation (1) and simplify we get
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {r.\dfrac{{\dfrac{{n!}}{{r!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}}}} = \sum\limits_{r = 1}^{10} {r.} \dfrac{{\dfrac{{n!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)\left( {n - r} \right)!}}}}$
Now simplify the above equation we have
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {\left( {n - r + 1} \right)} = \sum\limits_{r = 1}^{10} {\left( {\left( {n + 1} \right) - r} \right)} = \sum\limits_{r = 1}^{10} {\left( {n + 1} \right) - \sum\limits_{r = 1}^{10} r } $
(n + 1) is constant w.r.t. r so it is written outside the summation therefore
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } $
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } .............\left( 2 \right)$
Now as we know that $\sum\limits_{r = 1}^n 1 = n{\text{, }}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$
But in the above equation r is from 1 to 10.
$\sum\limits_{r = 1}^{10} 1 = 10{\text{, }}\sum\limits_{r = 1}^{10} r = \dfrac{{10\left( {10 + 1} \right)}}{2}$
Therefore from equation (2)
$
\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } = \left( {n + 1} \right)10 - \dfrac{{10\left( {10 + 1} \right)}}{2} \\
\Rightarrow \sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = 10n + 10 - 55 = 10n - 45 = 5\left( {2n - 9} \right) \\
$
Hence, option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall the property of combination and values of summation which is all stated above, then apply these properties in the given equation and simplify we will get the required answer.
Given equation is
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $……………. (1)
As we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ (combination property)
So, ${}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}$
Now, we know that $r! = r\left( {r - 1} \right)!{\text{ \& }}\left( {n - r + 1} \right)! = \left( {n - r + 1} \right)\left( {n - r} \right)!$
So substitute these values in equation (1) and simplify we get
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {r.\dfrac{{\dfrac{{n!}}{{r!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}}}} = \sum\limits_{r = 1}^{10} {r.} \dfrac{{\dfrac{{n!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)\left( {n - r} \right)!}}}}$
Now simplify the above equation we have
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {\left( {n - r + 1} \right)} = \sum\limits_{r = 1}^{10} {\left( {\left( {n + 1} \right) - r} \right)} = \sum\limits_{r = 1}^{10} {\left( {n + 1} \right) - \sum\limits_{r = 1}^{10} r } $
(n + 1) is constant w.r.t. r so it is written outside the summation therefore
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } $
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } .............\left( 2 \right)$
Now as we know that $\sum\limits_{r = 1}^n 1 = n{\text{, }}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$
But in the above equation r is from 1 to 10.
$\sum\limits_{r = 1}^{10} 1 = 10{\text{, }}\sum\limits_{r = 1}^{10} r = \dfrac{{10\left( {10 + 1} \right)}}{2}$
Therefore from equation (2)
$
\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } = \left( {n + 1} \right)10 - \dfrac{{10\left( {10 + 1} \right)}}{2} \\
\Rightarrow \sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = 10n + 10 - 55 = 10n - 45 = 5\left( {2n - 9} \right) \\
$
Hence, option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall the property of combination and values of summation which is all stated above, then apply these properties in the given equation and simplify we will get the required answer.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
