Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The value of tan810tan630tan270+tan90is
(A). 0(B). 2(C). 3(D). 4

Answer
VerifiedVerified
529.8k+ views
like imagedislike image
Hint: Try to write tanθ in terms of cotθ, then use trigonometric formulas.

Given:tan810tan630tan270+tan90
Rewriting above as:
(tan90+tan810)(tan270+tan630)(tan90+tan(90090))(tan270+tan(900270)) (A)
We know that, tan(900θ)=cotθ=cosθsinθ (1)
Putting the value of tan(900θ)from (1)in (A), we get
tan90+cot90tan270cot270
Now, since tanθ=sinθcosθ and cotθ=cosθsinθ
(sin90cos90+cos90sin90)(sin270cos270+cos270sin270)(sin290+cos290sin90cos90)(sin2270+cos2270sin270cos270)
Using the property sin2θ+cos2θ=1 in above equation, we get
(1sin90cos90)(1sin270cos270)
Also, we know that sinxcosx=sin2x2
(2sin180)(2sin540)2(sin540sin180sin180sin540)
Now, by using sinAsinB=2cos(A+B2)sin(AB2) in above equation, we get
2(2cos(54+182)sin(54182)sin180sin(900360))
using sin(900θ)=cosθin the above equation, we get
2(2cos(722)sin(362)sin180cos360)2(2cos(360)sin(180)sin180cos360)4(sin180cos360sin180cos360)4
the correct option is (D).

Note: Whenever there are integer angles inside trigonometric functions whose values are not known to us, always try to convert them by using 900θ in order to make calculation easier.