Answer
Verified
497.4k+ views
Hint- Here, after applying some row operations we will expand the determinant through first column as $\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.
Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
We can simplify the above given determinant by using some row operations.
Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$
After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right|$
By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right|$
Now, expanding the determinant through the first column, we get
\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\
\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\
\]
Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].
Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.
Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
We can simplify the above given determinant by using some row operations.
Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$
After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right|$
By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right|$
Now, expanding the determinant through the first column, we get
\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\
\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\
\]
Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].
Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE