Answer
Verified
459k+ views
Hint: The molar gas constant is also called ideal gas constant and is denoted by the symbol R. Its value can be easily found out by multiplying the Boltzmann constant and the Avogadro number.
Complete step by step answer:
The molar gas constant is also called ideal gas constant and is denoted by the symbol R. Since the ideal gas equation is derived by using the Boyle’s law, Charles’ law, Gay-Lussac’s law and Avogadro law, the ideal gas constant is a combination of Boyle’s constant, Charles’ constant, Gay-Lussac’s constant and Avogadro’s constant.
Its value can be easily found out by multiplying the Boltzmann constant and the Avogadro number i.e.
$ R={ N }_{ A }{ k }_{ B }$
Where ${ N }_{ A }$ is the Avogadro number and ${ k }_{ B }$ is the Boltzmann constant.
Let us find out the dimensions of the gas constant using the ideal gas equation.
According to the ideal gas equation, the product of the number of moles of the gas with the temperature and the gas constant is equal to the product of the pressure and the volume:
PV=nRT
Therefore,
$\Rightarrow R=\cfrac { PV }{ nT } $
The pressure is force per unit area. Hence the dimensions will be:
$\Rightarrow R=\cfrac { V\times \cfrac { force }{ area } }{ amount\times temperature } $
Since, the area is square of the length and the volume is length raise to the power of 3, Hence:
$R=\cfrac { { length }^{ 3 }\times \cfrac { force }{ { length }^{ 2 } } }{ amount\times temperature } $
Therefore, $\Rightarrow R=\cfrac { { length }\times Force }{ amount\times temperature } $
Now, the product of force and the length is force, therefore:
$R=\cfrac { work }{ amount\times temperature } $
Using the above dimensional formula, we can find the SI unit of the gas constant. Since the SI unit of work is Joules, the SI unit for the amount of a substance is mole and the SI unit of the temperature is Kelvin, therefore:
$R=\cfrac { J }{ mol\times K } =J{ K }^{ -1 }{ mol }^{ -1 }$
Therefore the value of the gas constant in SI unit will be: $R=8.314\quad J{ K }^{ -1 }{ mol }^{ -1 }$
Now, 1 J= 4.128 cal, therefore
8.314 J will be= $4.128\quad cal\times \cfrac { 8.314\quad J }{ 1\quad J } =1.987\quad cal$
Hence the correct answer is (b) $1.987\quad cal{ K }^{ -1 }{ mol }^{ -1 }$.
Note: Always remember that the gas constant will remain unchanged if we change the gas. Its value is not dependent on the nature of the gas. There is also a specific gas constant which does depend upon the molar mass of the gas. It is the ratio of the universal gas constant/ideal gas constant and the molar mass of the gas.
Complete step by step answer:
The molar gas constant is also called ideal gas constant and is denoted by the symbol R. Since the ideal gas equation is derived by using the Boyle’s law, Charles’ law, Gay-Lussac’s law and Avogadro law, the ideal gas constant is a combination of Boyle’s constant, Charles’ constant, Gay-Lussac’s constant and Avogadro’s constant.
Its value can be easily found out by multiplying the Boltzmann constant and the Avogadro number i.e.
$ R={ N }_{ A }{ k }_{ B }$
Where ${ N }_{ A }$ is the Avogadro number and ${ k }_{ B }$ is the Boltzmann constant.
Let us find out the dimensions of the gas constant using the ideal gas equation.
According to the ideal gas equation, the product of the number of moles of the gas with the temperature and the gas constant is equal to the product of the pressure and the volume:
PV=nRT
Therefore,
$\Rightarrow R=\cfrac { PV }{ nT } $
The pressure is force per unit area. Hence the dimensions will be:
$\Rightarrow R=\cfrac { V\times \cfrac { force }{ area } }{ amount\times temperature } $
Since, the area is square of the length and the volume is length raise to the power of 3, Hence:
$R=\cfrac { { length }^{ 3 }\times \cfrac { force }{ { length }^{ 2 } } }{ amount\times temperature } $
Therefore, $\Rightarrow R=\cfrac { { length }\times Force }{ amount\times temperature } $
Now, the product of force and the length is force, therefore:
$R=\cfrac { work }{ amount\times temperature } $
Using the above dimensional formula, we can find the SI unit of the gas constant. Since the SI unit of work is Joules, the SI unit for the amount of a substance is mole and the SI unit of the temperature is Kelvin, therefore:
$R=\cfrac { J }{ mol\times K } =J{ K }^{ -1 }{ mol }^{ -1 }$
Therefore the value of the gas constant in SI unit will be: $R=8.314\quad J{ K }^{ -1 }{ mol }^{ -1 }$
Now, 1 J= 4.128 cal, therefore
8.314 J will be= $4.128\quad cal\times \cfrac { 8.314\quad J }{ 1\quad J } =1.987\quad cal$
Hence the correct answer is (b) $1.987\quad cal{ K }^{ -1 }{ mol }^{ -1 }$.
Note: Always remember that the gas constant will remain unchanged if we change the gas. Its value is not dependent on the nature of the gas. There is also a specific gas constant which does depend upon the molar mass of the gas. It is the ratio of the universal gas constant/ideal gas constant and the molar mass of the gas.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE