
The value of the trigonometric function \[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}\] is
Answer
619.2k+ views
Hint:Simplify the numerator of the given expression and use the trigonometric formulae like\[\left( \cos A-\cos B \right)\] and \[\left( \operatorname{sinA}-\sin B \right)\] to solve the expression in numerator.
Complete step by step answer:
We are given the expression\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}\].
Let us first solve the numerator\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\].
The numerator can also be written as,
\[\begin{align}
& \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\left( \cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right) \\
& \Rightarrow \cos {{40}^{\circ }}-\left( \cos {{20}^{\circ }}-cos{{40}^{\circ }} \right)......(1) \\
\end{align}\]
Taking negative sign common from brackets,
We know the formula,
\[\begin{align}
& \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\]
Let us put\[A={{20}^{\circ }}\]and\[B={{40}^{\circ }}\].
\[\begin{align}
& \therefore \cos {{20}^{\circ }}-\cos {{40}^{\circ }}=2\sin \left( \dfrac{20+40}{2} \right)\sin \left( \dfrac{40-20}{2} \right) \\
& \Rightarrow 2\sin \left( \dfrac{60}{2} \right)\sin \left( \dfrac{20}{2} \right)=2\sin {{30}^{\circ }}\sin {{10}^{\circ }} \\
\end{align}\]
Substituting value of\[\left( \cos {{20}^{\circ }}-\cos {{40}^{\circ }} \right)\]in equation (1),
\[\Rightarrow \cos {{40}^{\circ }}-2\sin {{30}^{\circ }}\sin {{10}^{\circ }}........(2)\]
We know the value of\[\sin {{30}^{\circ }}={}^{1}/{}_{2}\]from the trigonometric table.
\[\therefore 2\sin {{30}^{\circ }}=1\], substitute it in equation (2).
\[\therefore \cos {{40}^{\circ }}-\sin {{10}^{\circ }}\]
By putting its denominator and substituting\[\left( \cos {{40}^{\circ }}-\sin {{10}^{\circ }} \right)\] in place of\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\],
\[\Rightarrow \dfrac{\cos {{40}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}......(3)\]
Let us take the cosine function of\[\cos {{40}^{\circ }}\], [we know 90-50=40]
\[\cos \left( 90-\theta \right)=\sin {{\theta }^{\circ }}\]
\[\therefore \]Put\[\theta ={{50}^{\circ }}\].
\[\therefore \cos \left( 90-50 \right)=\sin {{50}^{\circ }}\]
\[\therefore \]Equation (3) becomes\[\dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}\].
We know the formula for\[sinA-sinB=2cos\left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\].
Let us put\[A={{50}^{\circ }}\]and\[B={{10}^{\circ }}\].
\[\begin{align}
& \sin {{50}^{\circ }}-\sin {{10}^{\circ }}=2\cos \left( \dfrac{50+10}{2} \right)\sin \left( \dfrac{50-10}{2} \right) \\
& \Rightarrow 2\cos \dfrac{60}{2}\sin \dfrac{40}{2} \\
& \Rightarrow 2\cos 30\sin 20 \\
& \therefore \dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}=\dfrac{2\cos {{30}^{\circ }}\sin {{20}^{\circ }}}{\sin {{20}^{\circ }}} \\
\end{align}\]
Cancel out the like term\[\left( \sin {{20}^{\circ }} \right)\]from the numerator and denominator.
Hence, we get\[2\cos {{30}^{\circ }}.\]
We know the value of\[\cos {{30}^{\circ }}={}^{\sqrt{3}}/{}_{2}\].
Therefore, the expression =\[2\cos {{30}^{\circ }}=2\times \dfrac{\sqrt{3}}{2}=\sqrt{3}\]
Hence the value of\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}=\sqrt{3}.\]
Note:
To solve problems like these you should remember the trigonometric identities of sine and cosine functions along with the trigonometric table. In this expression, most are substitution of the formulae of sine and cosine functions and their simplification. Therefore be thorough with the formulae.
Complete step by step answer:
We are given the expression\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}\].
Let us first solve the numerator\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\].
The numerator can also be written as,
\[\begin{align}
& \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\left( \cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right) \\
& \Rightarrow \cos {{40}^{\circ }}-\left( \cos {{20}^{\circ }}-cos{{40}^{\circ }} \right)......(1) \\
\end{align}\]
Taking negative sign common from brackets,
We know the formula,
\[\begin{align}
& \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\]
Let us put\[A={{20}^{\circ }}\]and\[B={{40}^{\circ }}\].
\[\begin{align}
& \therefore \cos {{20}^{\circ }}-\cos {{40}^{\circ }}=2\sin \left( \dfrac{20+40}{2} \right)\sin \left( \dfrac{40-20}{2} \right) \\
& \Rightarrow 2\sin \left( \dfrac{60}{2} \right)\sin \left( \dfrac{20}{2} \right)=2\sin {{30}^{\circ }}\sin {{10}^{\circ }} \\
\end{align}\]
Substituting value of\[\left( \cos {{20}^{\circ }}-\cos {{40}^{\circ }} \right)\]in equation (1),
\[\Rightarrow \cos {{40}^{\circ }}-2\sin {{30}^{\circ }}\sin {{10}^{\circ }}........(2)\]
We know the value of\[\sin {{30}^{\circ }}={}^{1}/{}_{2}\]from the trigonometric table.
\[\therefore 2\sin {{30}^{\circ }}=1\], substitute it in equation (2).
\[\therefore \cos {{40}^{\circ }}-\sin {{10}^{\circ }}\]
By putting its denominator and substituting\[\left( \cos {{40}^{\circ }}-\sin {{10}^{\circ }} \right)\] in place of\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\],
\[\Rightarrow \dfrac{\cos {{40}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}......(3)\]
Let us take the cosine function of\[\cos {{40}^{\circ }}\], [we know 90-50=40]
\[\cos \left( 90-\theta \right)=\sin {{\theta }^{\circ }}\]
\[\therefore \]Put\[\theta ={{50}^{\circ }}\].
\[\therefore \cos \left( 90-50 \right)=\sin {{50}^{\circ }}\]
\[\therefore \]Equation (3) becomes\[\dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}\].
We know the formula for\[sinA-sinB=2cos\left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\].
Let us put\[A={{50}^{\circ }}\]and\[B={{10}^{\circ }}\].
\[\begin{align}
& \sin {{50}^{\circ }}-\sin {{10}^{\circ }}=2\cos \left( \dfrac{50+10}{2} \right)\sin \left( \dfrac{50-10}{2} \right) \\
& \Rightarrow 2\cos \dfrac{60}{2}\sin \dfrac{40}{2} \\
& \Rightarrow 2\cos 30\sin 20 \\
& \therefore \dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}=\dfrac{2\cos {{30}^{\circ }}\sin {{20}^{\circ }}}{\sin {{20}^{\circ }}} \\
\end{align}\]
Cancel out the like term\[\left( \sin {{20}^{\circ }} \right)\]from the numerator and denominator.
Hence, we get\[2\cos {{30}^{\circ }}.\]
We know the value of\[\cos {{30}^{\circ }}={}^{\sqrt{3}}/{}_{2}\].
Therefore, the expression =\[2\cos {{30}^{\circ }}=2\times \dfrac{\sqrt{3}}{2}=\sqrt{3}\]
Hence the value of\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}=\sqrt{3}.\]
Note:
To solve problems like these you should remember the trigonometric identities of sine and cosine functions along with the trigonometric table. In this expression, most are substitution of the formulae of sine and cosine functions and their simplification. Therefore be thorough with the formulae.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

