The value of $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ equals:
A. $\dfrac{1}{3}$
B. $\dfrac{1}{2}$
C. $\dfrac{2}{3}$
D. 1
Answer
Verified
463.2k+ views
Hint: The squeeze theorem states that if we define functions such that h(x) ≤ f(x) ≤ g(x) and if $\underset{x\to a}{\mathop{\lim }}\,h(x)=\underset{x\to a}{\mathop{\lim }}\,g(x)=L$ , then $\underset{x\to a}{\mathop{\lim }}\,f(x)=L$ .
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE