
The value of $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ equals:
A. $\dfrac{1}{3}$
B. $\dfrac{1}{2}$
C. $\dfrac{2}{3}$
D. 1
Answer
573.3k+ views
Hint: The squeeze theorem states that if we define functions such that h(x) ≤ f(x) ≤ g(x) and if $\underset{x\to a}{\mathop{\lim }}\,h(x)=\underset{x\to a}{\mathop{\lim }}\,g(x)=L$ , then $\underset{x\to a}{\mathop{\lim }}\,f(x)=L$ .
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

