Answer
Verified
500.1k+ views
Hint: You can solve this problem by taking logarithm and after that you will come to know that you have to use L-Hospital’s Rule
Step by step solution:
We will rewrite the given equation first,
\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Consider it as L,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
We will put limits directly,
\[\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}\]
\[\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}\]
As it is an indeterminate form therefore we should solve it by using different method,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Taking log on both sides, we will get
\[\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
As we all know that ‘log’ can be inserted in limits,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
To proceed further we should know some rules of logarithm which are given below,
Formulae:
1.\[\log ({{m}^{n}})=n\times \log m\]
2.\[\log \left( \dfrac{m}{n} \right)=\log m-\log n\]
3.\[\log \left( m\times n \right)=\log m+\log n\]
By using formula 1 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]\]
By using formula 2 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]\]
By using formula 3 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]\]
By using formula 1 again we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]\]
Now we will give negative sign inside the bracket,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}\]
We will divide each term by x which is in the denominator to simplify the expression,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]\]
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]\]
As we all know limits can be given separately for each term, therefore we can write above equation as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5\]
If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]………………………………………………. (a)
(i) (ii)
We should solve (i) and (ii) separately,
Consider,
\[L1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}\]
If we put limits directly we will get,
\[\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }\]
\[\therefore L1=\dfrac{\infty }{\infty }\]
As it is giving a \[\dfrac{\infty }{\infty }\] form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,
L-Hospital’s Rule:
If a limit of a function is giving an indeterminate form then,
\[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\],
And we can take the derivatives till the denominator is not becoming zero if we put the limits.
By using L-Hospital’s Rule we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]\]
Before proceeding further we should know the formulae of derivatives given below,
Formulae:
4. \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\]
5. \[\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a\]
6. \[\dfrac{d}{dx}\left( x \right)=1\]
By using formula 4 and 6 we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]\]
By using formula 5 we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]\]
As we observe above equation we can easily see that the denominator is still not vanished and still
maintaining the \[\dfrac{\infty }{\infty }\] form so we have to use L-Hospitals rule again. But it will be
lengthy as solved above.
To solve it shortly and to save time we can just take \[{{20}^{x}}\]common from denominator, therefore
we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
Now put the limits directly to get the answer,
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}\]
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0,
\[\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}\]
\[\therefore L1=\log 20\]……………………………………………………………….. (b)
Consider,
\[L2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}\]
If we put the limits directly we will get,
\[\therefore L2=\dfrac{\log 19}{\infty }\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0, therefore above equation will become,
\[\therefore L2=0\times \log 19\]
\[\therefore L2=0\]………………………………………………………………….. (c)
Now put the value of equation (b) and (c) in equation (a) we will get,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]
\[\therefore \log L=\log 20-0-\log 5\]
\[\therefore \log L=\log 20-\log 5\]
If we use the formula 2 in above equation we will get,
\[\therefore \log L=\log \dfrac{20}{5}\]
\[\therefore \log L=\log 4\]
We will take antilog on both sides to get the final answer,
\[\therefore L=4\]
\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4\]
Therefore the value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is 4.
Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity
and not tending to Zero and therefore the formula is not applicable in the above case.
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e\] but \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e\]
Step by step solution:
We will rewrite the given equation first,
\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Consider it as L,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
We will put limits directly,
\[\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}\]
\[\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}\]
As it is an indeterminate form therefore we should solve it by using different method,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Taking log on both sides, we will get
\[\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
As we all know that ‘log’ can be inserted in limits,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
To proceed further we should know some rules of logarithm which are given below,
Formulae:
1.\[\log ({{m}^{n}})=n\times \log m\]
2.\[\log \left( \dfrac{m}{n} \right)=\log m-\log n\]
3.\[\log \left( m\times n \right)=\log m+\log n\]
By using formula 1 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]\]
By using formula 2 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]\]
By using formula 3 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]\]
By using formula 1 again we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]\]
Now we will give negative sign inside the bracket,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}\]
We will divide each term by x which is in the denominator to simplify the expression,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]\]
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]\]
As we all know limits can be given separately for each term, therefore we can write above equation as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5\]
If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]………………………………………………. (a)
(i) (ii)
We should solve (i) and (ii) separately,
Consider,
\[L1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}\]
If we put limits directly we will get,
\[\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }\]
\[\therefore L1=\dfrac{\infty }{\infty }\]
As it is giving a \[\dfrac{\infty }{\infty }\] form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,
L-Hospital’s Rule:
If a limit of a function is giving an indeterminate form then,
\[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\],
And we can take the derivatives till the denominator is not becoming zero if we put the limits.
By using L-Hospital’s Rule we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]\]
Before proceeding further we should know the formulae of derivatives given below,
Formulae:
4. \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\]
5. \[\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a\]
6. \[\dfrac{d}{dx}\left( x \right)=1\]
By using formula 4 and 6 we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]\]
By using formula 5 we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]\]
As we observe above equation we can easily see that the denominator is still not vanished and still
maintaining the \[\dfrac{\infty }{\infty }\] form so we have to use L-Hospitals rule again. But it will be
lengthy as solved above.
To solve it shortly and to save time we can just take \[{{20}^{x}}\]common from denominator, therefore
we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
Now put the limits directly to get the answer,
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}\]
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0,
\[\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}\]
\[\therefore L1=\log 20\]……………………………………………………………….. (b)
Consider,
\[L2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}\]
If we put the limits directly we will get,
\[\therefore L2=\dfrac{\log 19}{\infty }\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0, therefore above equation will become,
\[\therefore L2=0\times \log 19\]
\[\therefore L2=0\]………………………………………………………………….. (c)
Now put the value of equation (b) and (c) in equation (a) we will get,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]
\[\therefore \log L=\log 20-0-\log 5\]
\[\therefore \log L=\log 20-\log 5\]
If we use the formula 2 in above equation we will get,
\[\therefore \log L=\log \dfrac{20}{5}\]
\[\therefore \log L=\log 4\]
We will take antilog on both sides to get the final answer,
\[\therefore L=4\]
\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4\]
Therefore the value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is 4.
Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity
and not tending to Zero and therefore the formula is not applicable in the above case.
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e\] but \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE