Answer
Verified
505.5k+ views
Hint: Find the equation of the lines which are forming the triangle.
The figure for the given problem is as follows:
Now we will find the equations of all the three sides of the triangle.
We know equation of line between the two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\]can be written as,
\[\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}\]
Applying the above formula, the equation of side AB is,
\[\dfrac{y-2}{0-2}=\dfrac{x-0}{2-0}\]
\[\dfrac{y-2}{-2}=\dfrac{x}{2}\]
\[\dfrac{y-2}{-1}=\dfrac{x}{1}\]
On cross multiplication, we get
\[y-2=-x\]
\[x+y-2=0........(i)\]
Similarly, the equation of side BC is,
\[\dfrac{y-0}{4-0}=\dfrac{x-2}{4-2}\]
\[\dfrac{y}{4}=\dfrac{x-2}{2}\]
\[\dfrac{y}{2}=\dfrac{x-2}{1}\]
On cross multiplication, we get
\[y=2x-4\]
\[2x-y-4=0........(ii)\]
And, the equation of side AC is,
\[\dfrac{y-2}{4-2}=\dfrac{x-0}{4-0}\]
\[\dfrac{y-2}{2}=\dfrac{x}{4}\]
\[\dfrac{y-2}{1}=\dfrac{x}{2}\]
On cross multiplication, we get
\[2y-4=x\]
\[x-2y+4=0........(iii)\]
Therefore the figure with equations is,
Two given points \[\left( {{x}_{1}},\text{ }{{y}_{1}} \right)\]and \[\left( {{x}_{2}},\text{ }{{y}_{2}} \right)\]will lie on the same side of the line \[ax+by+c=0\] if \[a{{x}_{1}}+b{{y}_{1}}+c\] and \[a{{x}_{2}}+b{{y}_{2}}+c\] will have same signs.
From the above figure it is clear that the points B and D lie on the same side of the line AC. So, it should satisfy the above condition, i.e.,
\[2-2(0)+4=6>0\]
So, when we substitute the value of point D in line AC, it should be greater than zero, i.e.,
\[\alpha -2(2\alpha )+4>0\]
\[\alpha -4\alpha +4>0\]
\[-3\alpha +4>0\]
\[4>3\alpha \]
\[\Rightarrow \alpha <\dfrac{4}{3}.........(iv)\]
Now from the above figure it is clear that the points C and D lie on the same side of the line AB. Substitute value of point C in equation of line AB, we get
\[4+4-2=6>0\]
So, when we substitute the value of point D in line AB, it should be greater than zero, i.e.,
\[\alpha +2\alpha -2>0\]
\[3\alpha -2>0\]
\[3\alpha >2\]
\[\Rightarrow \alpha >\dfrac{2}{3}.........(v)\]
So, from equation (iv) and (v), we get
\[\alpha \in \left( \dfrac{2}{3},\dfrac{4}{3} \right)\]
Hence the correct answer is option (c).
Note: We can solve this by finding boundaries of x and y. But the options are given in fraction form, using this method it gives the exact answer.
The figure for the given problem is as follows:
Now we will find the equations of all the three sides of the triangle.
We know equation of line between the two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\]can be written as,
\[\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}\]
Applying the above formula, the equation of side AB is,
\[\dfrac{y-2}{0-2}=\dfrac{x-0}{2-0}\]
\[\dfrac{y-2}{-2}=\dfrac{x}{2}\]
\[\dfrac{y-2}{-1}=\dfrac{x}{1}\]
On cross multiplication, we get
\[y-2=-x\]
\[x+y-2=0........(i)\]
Similarly, the equation of side BC is,
\[\dfrac{y-0}{4-0}=\dfrac{x-2}{4-2}\]
\[\dfrac{y}{4}=\dfrac{x-2}{2}\]
\[\dfrac{y}{2}=\dfrac{x-2}{1}\]
On cross multiplication, we get
\[y=2x-4\]
\[2x-y-4=0........(ii)\]
And, the equation of side AC is,
\[\dfrac{y-2}{4-2}=\dfrac{x-0}{4-0}\]
\[\dfrac{y-2}{2}=\dfrac{x}{4}\]
\[\dfrac{y-2}{1}=\dfrac{x}{2}\]
On cross multiplication, we get
\[2y-4=x\]
\[x-2y+4=0........(iii)\]
Therefore the figure with equations is,
Two given points \[\left( {{x}_{1}},\text{ }{{y}_{1}} \right)\]and \[\left( {{x}_{2}},\text{ }{{y}_{2}} \right)\]will lie on the same side of the line \[ax+by+c=0\] if \[a{{x}_{1}}+b{{y}_{1}}+c\] and \[a{{x}_{2}}+b{{y}_{2}}+c\] will have same signs.
From the above figure it is clear that the points B and D lie on the same side of the line AC. So, it should satisfy the above condition, i.e.,
\[2-2(0)+4=6>0\]
So, when we substitute the value of point D in line AC, it should be greater than zero, i.e.,
\[\alpha -2(2\alpha )+4>0\]
\[\alpha -4\alpha +4>0\]
\[-3\alpha +4>0\]
\[4>3\alpha \]
\[\Rightarrow \alpha <\dfrac{4}{3}.........(iv)\]
Now from the above figure it is clear that the points C and D lie on the same side of the line AB. Substitute value of point C in equation of line AB, we get
\[4+4-2=6>0\]
So, when we substitute the value of point D in line AB, it should be greater than zero, i.e.,
\[\alpha +2\alpha -2>0\]
\[3\alpha -2>0\]
\[3\alpha >2\]
\[\Rightarrow \alpha >\dfrac{2}{3}.........(v)\]
So, from equation (iv) and (v), we get
\[\alpha \in \left( \dfrac{2}{3},\dfrac{4}{3} \right)\]
Hence the correct answer is option (c).
Note: We can solve this by finding boundaries of x and y. But the options are given in fraction form, using this method it gives the exact answer.
Recently Updated Pages
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
What happens to the gravitational force between two class 11 physics NEET
Let x y be the real number satisfying the equation class 11 maths JEE_Main
The locus of the centre of the circles which cut the class 11 maths JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
To break a wire a stress of 2106 Nm2 is required If class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE