The vapor pressure of water at${{23}^{\circ }}C$is $\text{19}\cdot \text{8mm}$. $\text{0}\text{.1}$glucose is dissolved in $178\cdot 2g$ water. What is the vapor pressure (in mm) of the resultant solution?
A. 19
B. 19.602
C. 19.402
D. 19.202
Answer
Verified
448.5k+ views
Hint: Vapor pressure of a solution can be found using Raoult’s Law. According to this law, the partial vapor pressure of a component in a mixture is equal to the vapor pressure of the pure component at that temperature multiplied by its mole fraction in the mixture.
Formula used:$p={{p}_{o}}{{x}_{A}}$
$p\to $vapor pressure of solution
${{p}_{0}}\to $vapor pressure of pure component
${{\text{x}}_{A}}\to \text{ }$mole fraction
${{\text{x}}_{A}}=\dfrac{{{n}_{A}}}{{{n}_{B}}+{{n}_{B}}}$
Where ${{n}_{A}}\to $no. of moles of pure component (water)
Where ${{n}_{B}}\to $no. of moles of glucose
Complete answer:
Vapor Pressure: It is a measure of the tendency of a material to change into gaseous or vapor state.
Mole fraction: It is defined as the unit of amount of constituents divided by the total amount of all constituents in a mixture.
Given,
${{n}_{B}}$(number of moles of glucose)$=0\cdot 1$
${{n}_{B}}$(number of moles of water)$=\dfrac{\text{Given weight of substance}}{\text{Molar mass}}$
Molar mass for water$\left( {{\text{H}}_{2}}\text{O} \right)=2\times 1$(for${{\text{H}}_{2}})+16$(for O)
$=2+16=18$
So,
${{n}_{A}}=\dfrac{178\cdot 2}{18}=9\cdot 9$
${{x}_{A}}=\dfrac{{{n}_{A}}}{{{n}_{A}}+{{n}_{B}}}=\dfrac{9.9}{9\cdot 9+0\cdot 1}=\dfrac{9.9}{10\cdot 0}=0\cdot 99$
$\begin{align}
& \text{So, vapour pressure of solution (p)=}{{\text{p}}_{0}}{{x}_{A}} \\
& \\
\end{align}$
$=19\cdot 8\times 0\cdot 99$
$=19\cdot 602mm$ .
So, the correct answer is “Option B”.
Additional Information:
Raoult’s law was given by Francois-Marie Raoult in 1887. It is used to estimate the contribution of individual components of a liquid or solid mixture to the total pressure exerted by the system, especially for discrete mixtures where the quantity of each component is known.
Note:
Study about Raoult’s Law, mole fraction and the partial vapor pressure of mixtures. Ideal Solution is the solution in which molecular interactions between solute molecules are absolutely zero, and it follows Raoult’s Law. Positive Deviation from Raoult’s Law occurs when the vapor pressure of the components is greater than what is expected in Raoult’s Law. Negative Deviation in Raoult’s Law means that we find a lower than expected vapor pressure for the solution.
Formula used:$p={{p}_{o}}{{x}_{A}}$
$p\to $vapor pressure of solution
${{p}_{0}}\to $vapor pressure of pure component
${{\text{x}}_{A}}\to \text{ }$mole fraction
${{\text{x}}_{A}}=\dfrac{{{n}_{A}}}{{{n}_{B}}+{{n}_{B}}}$
Where ${{n}_{A}}\to $no. of moles of pure component (water)
Where ${{n}_{B}}\to $no. of moles of glucose
Complete answer:
Vapor Pressure: It is a measure of the tendency of a material to change into gaseous or vapor state.
Mole fraction: It is defined as the unit of amount of constituents divided by the total amount of all constituents in a mixture.
Given,
${{n}_{B}}$(number of moles of glucose)$=0\cdot 1$
${{n}_{B}}$(number of moles of water)$=\dfrac{\text{Given weight of substance}}{\text{Molar mass}}$
Molar mass for water$\left( {{\text{H}}_{2}}\text{O} \right)=2\times 1$(for${{\text{H}}_{2}})+16$(for O)
$=2+16=18$
So,
${{n}_{A}}=\dfrac{178\cdot 2}{18}=9\cdot 9$
${{x}_{A}}=\dfrac{{{n}_{A}}}{{{n}_{A}}+{{n}_{B}}}=\dfrac{9.9}{9\cdot 9+0\cdot 1}=\dfrac{9.9}{10\cdot 0}=0\cdot 99$
$\begin{align}
& \text{So, vapour pressure of solution (p)=}{{\text{p}}_{0}}{{x}_{A}} \\
& \\
\end{align}$
$=19\cdot 8\times 0\cdot 99$
$=19\cdot 602mm$ .
So, the correct answer is “Option B”.
Additional Information:
Raoult’s law was given by Francois-Marie Raoult in 1887. It is used to estimate the contribution of individual components of a liquid or solid mixture to the total pressure exerted by the system, especially for discrete mixtures where the quantity of each component is known.
Note:
Study about Raoult’s Law, mole fraction and the partial vapor pressure of mixtures. Ideal Solution is the solution in which molecular interactions between solute molecules are absolutely zero, and it follows Raoult’s Law. Positive Deviation from Raoult’s Law occurs when the vapor pressure of the components is greater than what is expected in Raoult’s Law. Negative Deviation in Raoult’s Law means that we find a lower than expected vapor pressure for the solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE