
The velocity of electromagnetic wave is parallel to:
(A) \[\overrightarrow B \times \overrightarrow E \]
(B) \[\overrightarrow E \times \overrightarrow B \]
(C) \[\overrightarrow E \]
(D) \[\overrightarrow B \]
Answer
444.3k+ views
Hint: When an electromagnetic wave such as light or x-ray or radio wave travels in a medium they all travel in the form of a transverse wave. Now electromagnetic waves are associated with both magnetic and electric fields which move along with them. These field waves are always perpendicular to the direction of motion of the electromagnetic wave.
Complete answer:
Now we know that the electromagnetic waves always propagate in the direction which is perpendicular to the direction of magnetic and electric field associated with them.
So, the options (C) and (D) can be eliminated directly as this option tends to show that the direction of the electromagnetic wave is parallel to the direction of electric and magnetic field.
We need to recall that the cross product of two vectors gives us a new vector whose direction is perpendicular to the direction of the two-vector present.
So according to the Poynting theorem, we cross magnetic field vectors with electric field vectors in order to get the direction of the propagation of the electromagnetic wave.
So, the correct way to get the direction is by crossing the electric field vector with the magnetic field vector.
\[\overrightarrow E \times \overrightarrow B \]
The correct option is (B).
Note:
Now if we \[\overrightarrow E \times \overrightarrow B \] cross we also get the exact value of the speed of the electromagnetic wave. Now we can also see that there is another option which is option (A) in which there is a cross product of vector but here the magnetic field vector is placed first this will give us the direction perpendicular to both the vectors but in the opposite direction to that of the propagation of wave.
Complete answer:
Now we know that the electromagnetic waves always propagate in the direction which is perpendicular to the direction of magnetic and electric field associated with them.
So, the options (C) and (D) can be eliminated directly as this option tends to show that the direction of the electromagnetic wave is parallel to the direction of electric and magnetic field.
We need to recall that the cross product of two vectors gives us a new vector whose direction is perpendicular to the direction of the two-vector present.
So according to the Poynting theorem, we cross magnetic field vectors with electric field vectors in order to get the direction of the propagation of the electromagnetic wave.
So, the correct way to get the direction is by crossing the electric field vector with the magnetic field vector.
\[\overrightarrow E \times \overrightarrow B \]
The correct option is (B).
Note:
Now if we \[\overrightarrow E \times \overrightarrow B \] cross we also get the exact value of the speed of the electromagnetic wave. Now we can also see that there is another option which is option (A) in which there is a cross product of vector but here the magnetic field vector is placed first this will give us the direction perpendicular to both the vectors but in the opposite direction to that of the propagation of wave.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

