Answer
Verified
470.7k+ views
Hint: Use the formula of speed of sound in gas $\sqrt {\dfrac{{\gamma RT}}{M}} $ and the root mean value $\sqrt {\dfrac{{3RT}}{M}} $ and then find their ratio.
Complete step by step solution:
We know the speed of sound in gas given by:
$\rho = $ $V = \sqrt {\dfrac{{\gamma RT}}{M}} $
And the root mean value is given by:
$C = \sqrt {\dfrac{{3RT}}{M}} $
On dividing v by c, we get,
$\dfrac{V}{C} = \sqrt {\dfrac{\gamma }{3}} $
Hence option d is correct.
Additional Information:
The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior. Sound propagate through a medium following the Newton-Laplace equation: The velocity of sound is $V = \sqrt {\dfrac{K}{\rho }} $ where, K=the modulus of bulk elasticity for gases and $\rho = $density of the medium. So v depends on both of them. Speed of sound decreases with increase in the density of the medium. Speed of sound increases with increase in temperature. Speed of sound increases in proportion to humidity in air. Humidity has a small but significant effect on speed of sound. The speed of sound increases when the sound wave is moving in the direction of wind. The speed of sound decreases when the sound wave is moving in the direction opposite to the direction of wind.
Note: In an ideal gas velocity of sound is only dependent on its temperature.
Complete step by step solution:
We know the speed of sound in gas given by:
$\rho = $ $V = \sqrt {\dfrac{{\gamma RT}}{M}} $
And the root mean value is given by:
$C = \sqrt {\dfrac{{3RT}}{M}} $
On dividing v by c, we get,
$\dfrac{V}{C} = \sqrt {\dfrac{\gamma }{3}} $
Hence option d is correct.
Additional Information:
The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior. Sound propagate through a medium following the Newton-Laplace equation: The velocity of sound is $V = \sqrt {\dfrac{K}{\rho }} $ where, K=the modulus of bulk elasticity for gases and $\rho = $density of the medium. So v depends on both of them. Speed of sound decreases with increase in the density of the medium. Speed of sound increases with increase in temperature. Speed of sound increases in proportion to humidity in air. Humidity has a small but significant effect on speed of sound. The speed of sound increases when the sound wave is moving in the direction of wind. The speed of sound decreases when the sound wave is moving in the direction opposite to the direction of wind.
Note: In an ideal gas velocity of sound is only dependent on its temperature.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE