Answer
Verified
469.8k+ views
Hint: To find the angle bisectors of the\[\angle ABC\], find equations of sides AB and BC and then use the formula of the bisector using those equations of AB and BC.
Complete step-by-step answer:
The vertices of the triangle are \[A( - 1, - 7),B(5,1)\] and \[C(1,4)\].
In two point form equation of a line joining two points (a,b) and (c,d),
\[y - d = \dfrac{{d - b}}{{c - a}}(x - c)\]
So if we find the equation of AB in two point form, we get,
\[y - 1 = \dfrac{{1 - ( - 7)}}{{5 - ( - 1)}}(x - 5)\]
On simplifying we get,
\[ \Rightarrow y - 1 = \dfrac{8}{6}(x - 5)\]
\[ \Rightarrow y - 1 = \dfrac{4}{3}(x - 5)\]
Multiplying with 3 we get,
\[ \Rightarrow 3y - 3 = 4x - 20\]
\[ \Rightarrow 3y - 4x + 17 = 0\]
Now, again in two point form, equation of BC,
\[
y - 4 = \dfrac{{4 - 1}}{{1 - 5}}(x - 1) \\
\Rightarrow y - 4 = - \dfrac{3}{4}(x - 1) \\
\Rightarrow 4y - 16 = - 3x + 3 \\
\Rightarrow 4y + 3x - 19 = 0 \\
\]
Now, the equation of bisectors will be, \[{a_1}x + {b_1}y + {c_1} = 0\]and \[{a_2}x + {b_2}y + {c_2} = 0\]are given by, \[\left| {\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {a_1^2 + b_1^2} }}} \right| = \pm \left| {\dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {a_2^2 + b_2^2} }}} \right|\]
So, The equation of the bisectors will be,
\[\left| {\dfrac{{3y - 4x + 17}}{{\sqrt {{3^2} + {4^2}} }}} \right| = \left| {\dfrac{{4y + 3x - 19}}{{\sqrt {{4^2} + {3^2}} }}} \right|\]
\[ \Rightarrow 3y - 4x + 17 = \pm (4y + 3x - 19)\]
So the bisectors will be,
\[3y - 4x + 17 = 4y + 3x - 19\]
\[ \Rightarrow 7x + y = 36\]
And
\[
3y - 4x + 17 = - 4y - 3x + 19 \\
\Rightarrow - x + 7y = 2 \\
\]
So, equation of the bisectors of \[\angle ABC\] are \[7x + y = 36\] and \[ - x + 7y = 2\].
Hence, option (A) is correct.
Note: Every angle of a triangle has two bisectors one internal and one external. And here we found two equations one of them is internal and other is external, hence we should consider both the cases.
Complete step-by-step answer:
The vertices of the triangle are \[A( - 1, - 7),B(5,1)\] and \[C(1,4)\].
In two point form equation of a line joining two points (a,b) and (c,d),
\[y - d = \dfrac{{d - b}}{{c - a}}(x - c)\]
So if we find the equation of AB in two point form, we get,
\[y - 1 = \dfrac{{1 - ( - 7)}}{{5 - ( - 1)}}(x - 5)\]
On simplifying we get,
\[ \Rightarrow y - 1 = \dfrac{8}{6}(x - 5)\]
\[ \Rightarrow y - 1 = \dfrac{4}{3}(x - 5)\]
Multiplying with 3 we get,
\[ \Rightarrow 3y - 3 = 4x - 20\]
\[ \Rightarrow 3y - 4x + 17 = 0\]
Now, again in two point form, equation of BC,
\[
y - 4 = \dfrac{{4 - 1}}{{1 - 5}}(x - 1) \\
\Rightarrow y - 4 = - \dfrac{3}{4}(x - 1) \\
\Rightarrow 4y - 16 = - 3x + 3 \\
\Rightarrow 4y + 3x - 19 = 0 \\
\]
Now, the equation of bisectors will be, \[{a_1}x + {b_1}y + {c_1} = 0\]and \[{a_2}x + {b_2}y + {c_2} = 0\]are given by, \[\left| {\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {a_1^2 + b_1^2} }}} \right| = \pm \left| {\dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {a_2^2 + b_2^2} }}} \right|\]
So, The equation of the bisectors will be,
\[\left| {\dfrac{{3y - 4x + 17}}{{\sqrt {{3^2} + {4^2}} }}} \right| = \left| {\dfrac{{4y + 3x - 19}}{{\sqrt {{4^2} + {3^2}} }}} \right|\]
\[ \Rightarrow 3y - 4x + 17 = \pm (4y + 3x - 19)\]
So the bisectors will be,
\[3y - 4x + 17 = 4y + 3x - 19\]
\[ \Rightarrow 7x + y = 36\]
And
\[
3y - 4x + 17 = - 4y - 3x + 19 \\
\Rightarrow - x + 7y = 2 \\
\]
So, equation of the bisectors of \[\angle ABC\] are \[7x + y = 36\] and \[ - x + 7y = 2\].
Hence, option (A) is correct.
Note: Every angle of a triangle has two bisectors one internal and one external. And here we found two equations one of them is internal and other is external, hence we should consider both the cases.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE