
The wave function $y = \dfrac{2}{{{{\left( {x - 3t} \right)}^2} + 1}}$ is a solution for a linear wave equation. $x$ and $y$ are in cm. Find its speed.
A) $3{\text{cm}}{{\text{s}}^{ - 1}}$
B) ${\text{4cm}}{{\text{s}}^{ - 1}}$
C) ${\text{5cm}}{{\text{s}}^{ - 1}}$
D) ${\text{6cm}}{{\text{s}}^{ - 1}}$
Answer
472.8k+ views
Hint:The given wave function satisfies the wave equation and so the velocity of the wave will be the ratio of the angular velocity of the wave to its wavenumber. The angular velocity is the coefficient of the time $t$ whereas the wavenumber is the coefficient of the position $x$ .
Formula used:
-The velocity of a wave is given by, $v = \dfrac{\omega }{k}$ where $\omega $ is the angular velocity or angular frequency of the wave and $k$ is the wavenumber of the wave.
Complete step by step answer.
Step 1: Express the general representation of the wave function to match with the given wave function.
The general representation of the wave function is given by, $y = A\sin \left( {kx - \omega t + \phi } \right)$ where $A$ is the amplitude of the wave, $k$ is the wavenumber of the wave, $x$ is its position at the time $t$ , $\omega $ is the angular frequency of the wave and $\phi $ is the initial phase of the wave.
The given wave function is $y = \dfrac{2}{{{{\left( {x - 3t} \right)}^2} + 1}}$ .
Since the angular frequency $\omega $ is the coefficient of the time $t$ we have $\omega = 3{\text{rad}}{{\text{s}}^{ - 1}}$ .
Also, since the wavenumber is the coefficient of the position $x$ we have $x = 1{\text{cm}}$ .
Step 2: Express the relation for the velocity of the wave.
The velocity of the wave can be expressed as $v = \dfrac{\omega }{k}$ ------- (1)
Substituting for $\omega = 3{\text{rad}}{{\text{s}}^{ - 1}}$ and $x = 1{\text{cm}}$ in equation (1) we get, $v = \dfrac{3}{1} = 3{\text{cm}}{{\text{s}}^{ - 1}}$ .
So the speed of the wave is obtained as $v = 3{\text{cm}}{{\text{s}}^{ - 1}}$ .
So the correct option is A.
Note:Here the amplitude of the wave cannot be determined with certainty by comparing the given wave function and its general form. The given wavefunction does not contain a sine term. This however does not change the fact that the wavenumber is the coefficient of $x$ and the angular frequency is the coefficient of $t$ . Wavenumber refers to the number of waves present in a given distance. The wave function corresponds to the displacement of the wave.
Formula used:
-The velocity of a wave is given by, $v = \dfrac{\omega }{k}$ where $\omega $ is the angular velocity or angular frequency of the wave and $k$ is the wavenumber of the wave.
Complete step by step answer.
Step 1: Express the general representation of the wave function to match with the given wave function.
The general representation of the wave function is given by, $y = A\sin \left( {kx - \omega t + \phi } \right)$ where $A$ is the amplitude of the wave, $k$ is the wavenumber of the wave, $x$ is its position at the time $t$ , $\omega $ is the angular frequency of the wave and $\phi $ is the initial phase of the wave.
The given wave function is $y = \dfrac{2}{{{{\left( {x - 3t} \right)}^2} + 1}}$ .
Since the angular frequency $\omega $ is the coefficient of the time $t$ we have $\omega = 3{\text{rad}}{{\text{s}}^{ - 1}}$ .
Also, since the wavenumber is the coefficient of the position $x$ we have $x = 1{\text{cm}}$ .
Step 2: Express the relation for the velocity of the wave.
The velocity of the wave can be expressed as $v = \dfrac{\omega }{k}$ ------- (1)
Substituting for $\omega = 3{\text{rad}}{{\text{s}}^{ - 1}}$ and $x = 1{\text{cm}}$ in equation (1) we get, $v = \dfrac{3}{1} = 3{\text{cm}}{{\text{s}}^{ - 1}}$ .
So the speed of the wave is obtained as $v = 3{\text{cm}}{{\text{s}}^{ - 1}}$ .
So the correct option is A.
Note:Here the amplitude of the wave cannot be determined with certainty by comparing the given wave function and its general form. The given wavefunction does not contain a sine term. This however does not change the fact that the wavenumber is the coefficient of $x$ and the angular frequency is the coefficient of $t$ . Wavenumber refers to the number of waves present in a given distance. The wave function corresponds to the displacement of the wave.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Why are forests affected by wars class 11 social science CBSE

Explain zero factorial class 11 maths CBSE
