The weight of the body on earth is $60 N$. Its weight on moon will be:
A. $360N$
B. $60N$
C. $10N$
D. $16N$
Answer
Verified
463.2k+ views
Hint:Mass of the body is a constant quantity and the acceleration due to the gravitational force on the moon is equal to approximately six times the acceleration due to the gravitational force on earth.
Complete step by step answer:
From the given question, we know that the weight of the body on earth is,
${W_e} = 60\;{\rm{kg}}$.
We know that the weight of a body on earth is equal to the product of mass of the body and acceleration due to gravity (gravitational force on earth).
${W_e} = m{g_e}$
We know that the value of acceleration due to gravity (gravitational force on earth) is $9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$
Since we know that the mass is a constant quantity. It does not depend on the location of it.
Substitute the given values in the above equation, we get,
\[60 = m{g_e}\]
\[\Rightarrow m = \dfrac{{60}}{{9.8}}\;{\rm{kg}}\]
The acceleration due to the gravitational force on the moon is equal to approximately six times the acceleration due to the gravitational force on earth.
${g_m} = 6{g_e}$
The weight of the body on the moon is expressed as,.
${W_m} = m{g_m}$
Rewrite the above equation,
${W_m} = m\left( {\dfrac{6}{{{g_e}}}} \right)$
Substitute the values and expression in the above equation, we have,
$
{W_m} = \dfrac{{60}}{{9.8}}\left( {\dfrac{{9.8}}{6}} \right)\\
\therefore{W_m} = 10\;{\rm{N}}
$
Thus, the weight of the body on moon is 10 N and option C is correct.
Note:Always remember that mass of the body is the property of a matter and it is a constant quantity and it does not depend on the location of it. Mass cannot be zero and it has only magnitude so it is a scalar quantity. Its SI unit is kg. While weight is the product of mass and acceleration due to gravitational force. It does depend on the location of it. Since every planet has their own gravitational force so the weight of the body is different from different planets or satellites. It can be zero.
Complete step by step answer:
From the given question, we know that the weight of the body on earth is,
${W_e} = 60\;{\rm{kg}}$.
We know that the weight of a body on earth is equal to the product of mass of the body and acceleration due to gravity (gravitational force on earth).
${W_e} = m{g_e}$
We know that the value of acceleration due to gravity (gravitational force on earth) is $9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$
Since we know that the mass is a constant quantity. It does not depend on the location of it.
Substitute the given values in the above equation, we get,
\[60 = m{g_e}\]
\[\Rightarrow m = \dfrac{{60}}{{9.8}}\;{\rm{kg}}\]
The acceleration due to the gravitational force on the moon is equal to approximately six times the acceleration due to the gravitational force on earth.
${g_m} = 6{g_e}$
The weight of the body on the moon is expressed as,.
${W_m} = m{g_m}$
Rewrite the above equation,
${W_m} = m\left( {\dfrac{6}{{{g_e}}}} \right)$
Substitute the values and expression in the above equation, we have,
$
{W_m} = \dfrac{{60}}{{9.8}}\left( {\dfrac{{9.8}}{6}} \right)\\
\therefore{W_m} = 10\;{\rm{N}}
$
Thus, the weight of the body on moon is 10 N and option C is correct.
Note:Always remember that mass of the body is the property of a matter and it is a constant quantity and it does not depend on the location of it. Mass cannot be zero and it has only magnitude so it is a scalar quantity. Its SI unit is kg. While weight is the product of mass and acceleration due to gravitational force. It does depend on the location of it. Since every planet has their own gravitational force so the weight of the body is different from different planets or satellites. It can be zero.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE