
There are three papers of $100$ marks each in an examination. In how many ways a student gets $150$ marks such that he gets at least $60$ percent in two papers.
A) $1480$
B) $1488$
C) $1520$
D) $1526$
Answer
492.6k+ views
Hint: In this problem, use a combination method to solve it. In the question student gets $150$ marks such that he gets at least $60$ percent in two papers. So we split $150$ according to it. And perform questions using a combination method also in a number of ways according to the given question.
Formula: $^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
Complete step by step solution: Given that-
Student gets $150$ marks such that he gets at least $60$ percent in two papers.
$150 = \left( {60 + 60 + 30} \right)$
Because $60$ percent in two papers and remaining are$30$ to complete$150$.
Number of ways$ = $ coefficient of ${x^{150}}$ is
$\left\{ {{{\left( {{x^{60}} + {x^{61}} + .......{x^{100}}} \right)}^2}\left( {1 + x + {x^{2 + }}.........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
$\left\{ {{{\left( {1 + x + {x^{2 + }}.........{x^{40}}} \right)}^2}\left( {1 + x + {x^2} + .........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
\[
{\left( {\dfrac{{1 - {x^{41}}}}{{1 - x}}} \right)^2}\left( {\dfrac{{1 - {x^{31}}}}{{1 - x}}} \right) \\
\Rightarrow {\left( {1 - x} \right)^{ - 3}} \\
\Rightarrow {x^{30 + 3 - 1}}{C_{3 - 1}} \\
{ \Rightarrow ^{32}}{C_2} \\
\]
Thus the student gets $60$ percent marks in first two papers to get $150$ marks
Number of ways ${ = ^{32}}{C_2}$
But the two paper at least $60$ percent, can be chosen out of $3$ papers
Number of ways${ = ^3}{C_2}$
Required number of ways ${ = ^3}{C_2}{ \times ^{32}}{C_2}$
To solve above combination use formula
$^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
${ = ^3}{C_2}{ \times ^{32}}{C_2}$
$
\dfrac{{3!}}{{2! \times \left( {2 - 1} \right)!}} \times \dfrac{{32!}}{{2!\left( {32 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{2! \times 1!}} \times \dfrac{{32!}}{{2! \times 30!}} \\
\Rightarrow \dfrac{{3 \times 2 \times 1}}{{2 \times 1 \times 1}} \times \dfrac{{32 \times 31 \times 30 \times 29........2 \times 1}}{{2 \times 1 \times 30 \times 29.....2 \times 1}} \\
\Rightarrow 3 \times 496 \\
\Rightarrow 1488 \\
$ To solve it we get:
Number of ways $ = 1488$
Hence option B is the correct answer.
Note: First we have the total number of ways according to the question. By making these combinations we have a required number of total ways. After that we solve the number of ways by using the formula. This we get the total number of ways a student gets $150$ marks such that he gets at least $60$ percent in two papers. Hence the answer is 1488 .
Formula: $^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
Complete step by step solution: Given that-
Student gets $150$ marks such that he gets at least $60$ percent in two papers.
$150 = \left( {60 + 60 + 30} \right)$
Because $60$ percent in two papers and remaining are$30$ to complete$150$.
Number of ways$ = $ coefficient of ${x^{150}}$ is
$\left\{ {{{\left( {{x^{60}} + {x^{61}} + .......{x^{100}}} \right)}^2}\left( {1 + x + {x^{2 + }}.........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
$\left\{ {{{\left( {1 + x + {x^{2 + }}.........{x^{40}}} \right)}^2}\left( {1 + x + {x^2} + .........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
\[
{\left( {\dfrac{{1 - {x^{41}}}}{{1 - x}}} \right)^2}\left( {\dfrac{{1 - {x^{31}}}}{{1 - x}}} \right) \\
\Rightarrow {\left( {1 - x} \right)^{ - 3}} \\
\Rightarrow {x^{30 + 3 - 1}}{C_{3 - 1}} \\
{ \Rightarrow ^{32}}{C_2} \\
\]
Thus the student gets $60$ percent marks in first two papers to get $150$ marks
Number of ways ${ = ^{32}}{C_2}$
But the two paper at least $60$ percent, can be chosen out of $3$ papers
Number of ways${ = ^3}{C_2}$
Required number of ways ${ = ^3}{C_2}{ \times ^{32}}{C_2}$
To solve above combination use formula
$^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
${ = ^3}{C_2}{ \times ^{32}}{C_2}$
$
\dfrac{{3!}}{{2! \times \left( {2 - 1} \right)!}} \times \dfrac{{32!}}{{2!\left( {32 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{2! \times 1!}} \times \dfrac{{32!}}{{2! \times 30!}} \\
\Rightarrow \dfrac{{3 \times 2 \times 1}}{{2 \times 1 \times 1}} \times \dfrac{{32 \times 31 \times 30 \times 29........2 \times 1}}{{2 \times 1 \times 30 \times 29.....2 \times 1}} \\
\Rightarrow 3 \times 496 \\
\Rightarrow 1488 \\
$ To solve it we get:
Number of ways $ = 1488$
Hence option B is the correct answer.
Note: First we have the total number of ways according to the question. By making these combinations we have a required number of total ways. After that we solve the number of ways by using the formula. This we get the total number of ways a student gets $150$ marks such that he gets at least $60$ percent in two papers. Hence the answer is 1488 .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Explain the system of Dual Government class 8 social science CBSE

What is Kayal in Geography class 8 social science CBSE

Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE
