Answer
Verified
459k+ views
Hint: We are given a tank with a hole in which the water is coming and from which the water is leaving. We are required to find the capacity of the tank. To solve this question, we will calculate the inlet and the outlet speed of the tank, and based on that we will get our total capacity.
Complete step-by-step answer:
Let us assume that the rate with which the tank empties is \[x\].
We are given that a hole can empty the full tank in 8hours.
Thus, the total amount of water that will flow out of the tank will be \[ = 8 \times x\].
Now, this will also be the capacity of the tank as the leak is emptying the full tank.
So, the capacity of the tank \[ = 8 \times x\]
Now, we are given that a tap is opened into the tank which admits water at 6 liters per hour. This will cause the rate of outflowing of the water to decrease.
Thus, the new rate of the outflow with which the tank will empty \[ = x - 6\]
Also, we are given that after the tap is opened the hole takes 12 hours. to empty the full tank.
Hence, the new rate of outflow will be \[ = 12 \times \left( {x - 6} \right)\]
This is also the capacity of the tank as the leak is emptying the full tank.
So, we will now equate the two capacities. On doing so, we get
\[8 \times x = 12 \times \left( {x - 6} \right)\]
Multiplying the terms, we get
\[\begin{array}{l}8x = 12x - 72\\ \Rightarrow 8x - 12x = - 72\end{array}\]
Subtracting the like terms, we get
\[ \Rightarrow - 4x = - 72\]
Dividing both sides by \[ - 4\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{ - 4x}}{{ - 4}} = \dfrac{{ - 72}}{{ - 4}}\\ \Rightarrow x = 18\end{array}\]
Thus, we get the rate of outflow of the tank as 18 liters/hours.
So now the capacity of the tank will be \[ = 8 \times x = 8 \times 18 = 144\]
Thus, the full capacity of the tank is 144 Liters.
Hence, the correct answer is option C
Note: We can check our answer by substituting the value of \[x = 18\]in the equation \[8 \times x = 12 \times \left( {x - 6} \right)\]. If the equation will be satisfied so our solution will be correct otherwise wrong.
Substituting \[x = 18\] in the equation, we get
\[8 \times 18 = 12 \times \left( {18 - 6} \right)\]
Multiplying the terms, we get
\[\begin{array}{l} \Rightarrow 144 = 12 \times 12\\ \Rightarrow 144 = 144\end{array}\]
As our equation is satisfied so our solution is correct.
Complete step-by-step answer:
Let us assume that the rate with which the tank empties is \[x\].
We are given that a hole can empty the full tank in 8hours.
Thus, the total amount of water that will flow out of the tank will be \[ = 8 \times x\].
Now, this will also be the capacity of the tank as the leak is emptying the full tank.
So, the capacity of the tank \[ = 8 \times x\]
Now, we are given that a tap is opened into the tank which admits water at 6 liters per hour. This will cause the rate of outflowing of the water to decrease.
Thus, the new rate of the outflow with which the tank will empty \[ = x - 6\]
Also, we are given that after the tap is opened the hole takes 12 hours. to empty the full tank.
Hence, the new rate of outflow will be \[ = 12 \times \left( {x - 6} \right)\]
This is also the capacity of the tank as the leak is emptying the full tank.
So, we will now equate the two capacities. On doing so, we get
\[8 \times x = 12 \times \left( {x - 6} \right)\]
Multiplying the terms, we get
\[\begin{array}{l}8x = 12x - 72\\ \Rightarrow 8x - 12x = - 72\end{array}\]
Subtracting the like terms, we get
\[ \Rightarrow - 4x = - 72\]
Dividing both sides by \[ - 4\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{ - 4x}}{{ - 4}} = \dfrac{{ - 72}}{{ - 4}}\\ \Rightarrow x = 18\end{array}\]
Thus, we get the rate of outflow of the tank as 18 liters/hours.
So now the capacity of the tank will be \[ = 8 \times x = 8 \times 18 = 144\]
Thus, the full capacity of the tank is 144 Liters.
Hence, the correct answer is option C
Note: We can check our answer by substituting the value of \[x = 18\]in the equation \[8 \times x = 12 \times \left( {x - 6} \right)\]. If the equation will be satisfied so our solution will be correct otherwise wrong.
Substituting \[x = 18\] in the equation, we get
\[8 \times 18 = 12 \times \left( {18 - 6} \right)\]
Multiplying the terms, we get
\[\begin{array}{l} \Rightarrow 144 = 12 \times 12\\ \Rightarrow 144 = 144\end{array}\]
As our equation is satisfied so our solution is correct.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE