Answer
Verified
430.5k+ views
Hint: We are given three people standing on the circumference of a circle. We shall represent every person with a separate point on the circle to properly analyze their location and the relationship between the given distances between every point with the radius of the circle. Then, we will use the basic properties of geometry in order to get the final distance.
Complete step by step solution:
Let point A represent Anjali, point B represent Sonia and point C represent Surjit. Also, let O be the center of the circle.
Given that $AB=BC=8m$ and the radius of the circle is a 8m.
$\Rightarrow OA=OC=OB=8m$ ………………….. (1)
Thus, we see that $\Delta OAC$ is an equilateral triangle because all the sides of the triangle (OA, OB and AB) are equal. This implies that every angle of this triangle would be of ${{60}^{\circ }}$ each.
$\angle AOD={{60}^{\circ }}$ ……………….. (2)
We know that any line from the center intersecting the chord of the circle always bisects the chord perpendicularly. Thus, OD perpendicularly bisects AC.
$\Rightarrow AD=DC$ and $\angle ODA={{90}^{\circ }}$. ……………….. (3)
Now, in the right-angled triangle, $\Delta ODA$, we shall use some trigonometric values.
We know that $\sin \theta =\dfrac{P}{H}$
Where, $P=$ perpendicular and $H=$ hypotenuse
$\Rightarrow \sin AOD=\dfrac{AD}{AO}$
Substituting values from (1) and (2), we get
$\Rightarrow \sin {{60}^{\circ }}=\dfrac{AD}{8}$
Since, $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ ,
$\Rightarrow \dfrac{\sqrt{3}}{2}=\dfrac{AD}{8}$
$\Rightarrow AD=4\sqrt{3}$
Now, we have $AC=AD+DC$
From (3), we have
$\Rightarrow AC=2AD$
Putting the values of AD, we get
\[\Rightarrow AC=2\left( 4\sqrt{3} \right)\]
$\therefore AC=8\sqrt{3}$
Therefore, the distance between Anjali and Surjit is $8\sqrt{3}m$.
Note: In order to solve geometrical problems where trigonometric concepts are involved, we must memorize the values of the angles of trigonometric functions. Also, the answer would have remained the same if we would have solved using $\Delta ODC$ instead of $\Delta ODA$.
Complete step by step solution:
Let point A represent Anjali, point B represent Sonia and point C represent Surjit. Also, let O be the center of the circle.
Given that $AB=BC=8m$ and the radius of the circle is a 8m.
$\Rightarrow OA=OC=OB=8m$ ………………….. (1)
Thus, we see that $\Delta OAC$ is an equilateral triangle because all the sides of the triangle (OA, OB and AB) are equal. This implies that every angle of this triangle would be of ${{60}^{\circ }}$ each.
$\angle AOD={{60}^{\circ }}$ ……………….. (2)
We know that any line from the center intersecting the chord of the circle always bisects the chord perpendicularly. Thus, OD perpendicularly bisects AC.
$\Rightarrow AD=DC$ and $\angle ODA={{90}^{\circ }}$. ……………….. (3)
Now, in the right-angled triangle, $\Delta ODA$, we shall use some trigonometric values.
We know that $\sin \theta =\dfrac{P}{H}$
Where, $P=$ perpendicular and $H=$ hypotenuse
$\Rightarrow \sin AOD=\dfrac{AD}{AO}$
Substituting values from (1) and (2), we get
$\Rightarrow \sin {{60}^{\circ }}=\dfrac{AD}{8}$
Since, $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ ,
$\Rightarrow \dfrac{\sqrt{3}}{2}=\dfrac{AD}{8}$
$\Rightarrow AD=4\sqrt{3}$
Now, we have $AC=AD+DC$
From (3), we have
$\Rightarrow AC=2AD$
Putting the values of AD, we get
\[\Rightarrow AC=2\left( 4\sqrt{3} \right)\]
$\therefore AC=8\sqrt{3}$
Therefore, the distance between Anjali and Surjit is $8\sqrt{3}m$.
Note: In order to solve geometrical problems where trigonometric concepts are involved, we must memorize the values of the angles of trigonometric functions. Also, the answer would have remained the same if we would have solved using $\Delta ODC$ instead of $\Delta ODA$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE