Answer
Verified
460.5k+ views
Hint: The magnitude of the vectors displayed in the question diagram can be determined using the usual gravitational force expression. The resultant can be calculated using parallelogram law of vector addition.
Formula used:
Between any two masses, the force of gravity experienced is written as:
$F_{21} = F_{12} = G \dfrac{m_1 m_2}{r^2}$
(in magnitude).
Complete answer:
We deal with all the options one by one;
(A). The resultant force on 4 kg mass is the vector sum of the forces between 2 kg and 4 kg mass and 6 kg and 4 kg mass.
First, let us write the magnitude of force between 6 kg and 4 kg:
$F_{64} = 6.67 \times 10^{-11} \times \dfrac{6 \times 4}{4^2} = 1.001 \times 10^{-10}$ N = 100 pN (approx.)
Similarly, between 2 kg and 4 kg mass we have:
$F_{24} = 6.67 \times 10^{-11} \times \dfrac{2 \times 4}{3^2} = 5.932 \times 10^{-11}$ N = 59.3 pN (approx.)
We apply parallelogram law of vector addition so that the resultant we get is
$F_{res} = -100\hat{i} + 59.3 \hat{j}$
Therefore option (A) is a correct statement.
(B) Now, as we already established (A) is correct this clearly means that the statement (B) has to be incorrect.
(C). This statement is also incorrect because the magnitude of the gravitational force not only depends on the masses but also depends on the distance of separation. If we change the position of the masses, the resultant will not remain the same.
(D). The force between 2 kg and 4 kg will still have the same magnitude as we had previously, which was 59.3 pN.
The magnitude of force between 2 kg and 6 kg will be:
$F_{62} = 6.67 \times 10^{-11} \times \dfrac{6 \times 2}{4^2} = 5.005 \times 10^{-11}$ N = 50 pN (approx.).
Therefore the statement in option (D) is also correct.
So, the correct answer is “Option A and D”.
Note:
The vector addition has to be performed keeping in mind the positive or negative directions on the x or y axis. As on the x axis, our force vector points in negative x direction, the force will be taken as negative. Along the y direction, the force is along a positive y direction, so it is taken positively. Mind that even when the force would have depicted towards the negative side of x axis, but if the arrow of the vector points towards +x direction, the force had to be taken positively.
Formula used:
Between any two masses, the force of gravity experienced is written as:
$F_{21} = F_{12} = G \dfrac{m_1 m_2}{r^2}$
(in magnitude).
Complete answer:
We deal with all the options one by one;
(A). The resultant force on 4 kg mass is the vector sum of the forces between 2 kg and 4 kg mass and 6 kg and 4 kg mass.
First, let us write the magnitude of force between 6 kg and 4 kg:
$F_{64} = 6.67 \times 10^{-11} \times \dfrac{6 \times 4}{4^2} = 1.001 \times 10^{-10}$ N = 100 pN (approx.)
Similarly, between 2 kg and 4 kg mass we have:
$F_{24} = 6.67 \times 10^{-11} \times \dfrac{2 \times 4}{3^2} = 5.932 \times 10^{-11}$ N = 59.3 pN (approx.)
We apply parallelogram law of vector addition so that the resultant we get is
$F_{res} = -100\hat{i} + 59.3 \hat{j}$
Therefore option (A) is a correct statement.
(B) Now, as we already established (A) is correct this clearly means that the statement (B) has to be incorrect.
(C). This statement is also incorrect because the magnitude of the gravitational force not only depends on the masses but also depends on the distance of separation. If we change the position of the masses, the resultant will not remain the same.
(D). The force between 2 kg and 4 kg will still have the same magnitude as we had previously, which was 59.3 pN.
The magnitude of force between 2 kg and 6 kg will be:
$F_{62} = 6.67 \times 10^{-11} \times \dfrac{6 \times 2}{4^2} = 5.005 \times 10^{-11}$ N = 50 pN (approx.).
Therefore the statement in option (D) is also correct.
So, the correct answer is “Option A and D”.
Note:
The vector addition has to be performed keeping in mind the positive or negative directions on the x or y axis. As on the x axis, our force vector points in negative x direction, the force will be taken as negative. Along the y direction, the force is along a positive y direction, so it is taken positively. Mind that even when the force would have depicted towards the negative side of x axis, but if the arrow of the vector points towards +x direction, the force had to be taken positively.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE