Answer
Verified
460.8k+ views
Hint: We will first draw a rectangle with the help of given three coordinates on the graph. Examining the graph, we will find the fourth coordinate. Similarly, we will find the midpoint of CD using a graph or midpoint formula. At last to calculate the area of the rectangle we will require length and breadth of rectangle because area of rectangle = length x breadth. We will find length and breadth using distance formulas between coordinates. Distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given by \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\].
Complete step-by-step solution
Let us draw a graph using three coordinates and drawing perpendicular lines to find coordinates of D.
As from the graph, we can see that coordinates of D are $\left( 4,-1 \right)$. Now let us use the midpoint formula to find the midpoint of CD.
Coordinates of C are $\left( 4,7 \right)$ and coordinates of D are $\left( 4,-1 \right)$.
Midpoint of CD is given by
$\begin{align}
& \left( \dfrac{4+4}{2},\dfrac{7-1}{2} \right) \\
& =\left( \dfrac{8}{2},\dfrac{6}{2} \right) \\
& =\left( 4,3 \right) \\
\end{align}$
Hence, the midpoint of CD is $\left( 4,3 \right)$.
Now, we have to calculate the area of the rectangle. For that, we have to find the length and breadth which is given by distances between AB and BC.
Using distance formula on AB, we get –
$\begin{align}
& AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}} \\
& =\sqrt{{{\left( 2-2 \right)}^{2}}+{{\left( 7-\left( -1 \right) \right)}^{2}}} \\
& =\sqrt{{{\left( 8 \right)}^{2}}} \\
& =8 \\
\end{align}$
Using distance formula on BC, we get –
$\begin{align}
& AB=\sqrt{{{\left( 4-2 \right)}^{2}}+{{\left( 7-7 \right)}^{2}}} \\
& =\sqrt{{{\left( 2 \right)}^{2}}} \\
& =2 \\
\end{align}$
Hence, length $=8units$ and breadth $=2units$.
The area of the rectangle is given by length x breadth. Therefore,
Area of rectangle $=8\times 2=16~square~units$.
Note: Students should carefully mark points on graphs. Lines must be perpendicular to obtain an accurate value of point D. Students can also check coordinates of D by measuring the distance between CD and AB and checking them if they are equal. The midpoint of the CD can also be found with the help of the graph. It is important to mark the X and Y-axis on the graph. To find midpoint through the graph, draw diagonals and then draw lines from the center to CD to obtain the point on CD.
Complete step-by-step solution
Let us draw a graph using three coordinates and drawing perpendicular lines to find coordinates of D.
As from the graph, we can see that coordinates of D are $\left( 4,-1 \right)$. Now let us use the midpoint formula to find the midpoint of CD.
Coordinates of C are $\left( 4,7 \right)$ and coordinates of D are $\left( 4,-1 \right)$.
Midpoint of CD is given by
$\begin{align}
& \left( \dfrac{4+4}{2},\dfrac{7-1}{2} \right) \\
& =\left( \dfrac{8}{2},\dfrac{6}{2} \right) \\
& =\left( 4,3 \right) \\
\end{align}$
Hence, the midpoint of CD is $\left( 4,3 \right)$.
Now, we have to calculate the area of the rectangle. For that, we have to find the length and breadth which is given by distances between AB and BC.
Using distance formula on AB, we get –
$\begin{align}
& AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}} \\
& =\sqrt{{{\left( 2-2 \right)}^{2}}+{{\left( 7-\left( -1 \right) \right)}^{2}}} \\
& =\sqrt{{{\left( 8 \right)}^{2}}} \\
& =8 \\
\end{align}$
Using distance formula on BC, we get –
$\begin{align}
& AB=\sqrt{{{\left( 4-2 \right)}^{2}}+{{\left( 7-7 \right)}^{2}}} \\
& =\sqrt{{{\left( 2 \right)}^{2}}} \\
& =2 \\
\end{align}$
Hence, length $=8units$ and breadth $=2units$.
The area of the rectangle is given by length x breadth. Therefore,
Area of rectangle $=8\times 2=16~square~units$.
Note: Students should carefully mark points on graphs. Lines must be perpendicular to obtain an accurate value of point D. Students can also check coordinates of D by measuring the distance between CD and AB and checking them if they are equal. The midpoint of the CD can also be found with the help of the graph. It is important to mark the X and Y-axis on the graph. To find midpoint through the graph, draw diagonals and then draw lines from the center to CD to obtain the point on CD.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE