How much time will it take for the solar radiation to reach Mars?
(A)10 min
(B)12.6 min
(C)15 min
(D)14.8 min
Answer
Verified
425.4k+ views
Hint :In order to solve this question, we are going to first what distance the light needs to travel to cover the orbital radius of Mars. Then, by using the standard value of the speed of the light, we can very easily determine the time taken by the solar radiation to reach the planet Mars.
If $ s $ is the distance which a planet covers with the speed $ v $ , then, the time taken is given by
$ t = \dfrac{s}{v} $
Complete Step By Step Answer:
In this question, the distance which is required by the light to travel is equal to the orbital radius of the Mars which is equal to $ 2.28 \times {10^{11}}m $ where for approximately circular orbits the orbital radius is the distance from an object in space to the body which it is orbiting.
Now, as we know that the speed with which the light travels in the vacuum is given by the value $ 3 \times {10^8}m{s^{ - 1}} $
Thus, the time taken by the solar radiation to reach the planet Mars is calculated as
$ t = \dfrac{{2.28 \times {{10}^{11}}m}}{{3 \times {{10}^8}m{s^{ - 1}}}} = 0.76 \times {10^3}s \\
\Rightarrow t = 760s $
Converting this time into minutes, we get
$ \Rightarrow t = 12\min 40s = 12.67\min $
Hence, option $ (B)12.6\min $ is the correct answer.
Note :
In orbital mechanics, the Hohmann Transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii around a central body in the same plane. The Hohmann transfer often uses the lowest possible amount of propellant in traveling between these orbits, but bi-elliptic transfers can use less in some cases.
If $ s $ is the distance which a planet covers with the speed $ v $ , then, the time taken is given by
$ t = \dfrac{s}{v} $
Complete Step By Step Answer:
In this question, the distance which is required by the light to travel is equal to the orbital radius of the Mars which is equal to $ 2.28 \times {10^{11}}m $ where for approximately circular orbits the orbital radius is the distance from an object in space to the body which it is orbiting.
Now, as we know that the speed with which the light travels in the vacuum is given by the value $ 3 \times {10^8}m{s^{ - 1}} $
Thus, the time taken by the solar radiation to reach the planet Mars is calculated as
$ t = \dfrac{{2.28 \times {{10}^{11}}m}}{{3 \times {{10}^8}m{s^{ - 1}}}} = 0.76 \times {10^3}s \\
\Rightarrow t = 760s $
Converting this time into minutes, we get
$ \Rightarrow t = 12\min 40s = 12.67\min $
Hence, option $ (B)12.6\min $ is the correct answer.
Note :
In orbital mechanics, the Hohmann Transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii around a central body in the same plane. The Hohmann transfer often uses the lowest possible amount of propellant in traveling between these orbits, but bi-elliptic transfers can use less in some cases.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE