Answer
Verified
489k+ views
Hint: - We must know the ideal gas equation for solving this question. Hence our ideal gas equation is PV = nRT. It can be established from the postulates of the kinetic theory of gases developed by Clerk Maxwell.
Complete answer:
According to the first law of thermodynamics,
$\Delta U = q + W$
$W = \Delta U - q$ ---(i)
Here ΔU is the change in the internal energy system and W is the work done by the system.
We know
$W = P\Delta V$----(ii)
From (i) & (ii)
$P\Delta V = \Delta U - q$
$\Delta U = q + P\Delta V$---(iii)
Also, we know
$\Delta U = n{C_V}\Delta T$
Initial internal energy of n moles of diatomic gas is
${U_1} = n\left( {\dfrac{6}{2}R} \right){T_1}$=$3nR{T_1}$
Now, Internal energy of gas after heating is
${U_2} = n\left( {\dfrac{6}{2}R} \right){T_2}$=$3nR{T_2}$
Therefore,
$\Delta U = U_2 - U_1$
$\Delta U = 3nR{T_2} - 3nR{T_1}$
$\Delta U = 3nR({T_2} - {T_1})$
$\Delta U = 3nR\Delta T$
We know that in ideal gas equation,
$PV = nRT$
$P\Delta V = nR\Delta T$
$\Delta U = 3P\Delta V$---(iv)
From (iii) and (iv)
$3P\Delta V = q + P\Delta V$
$2P\Delta V = q$
$P\Delta V = \dfrac{q}{2}$
$W = \dfrac{{800}}{2}$
W=400 Cal from (i)
Hence option C is correct i.e., work done is 400 Cal
Note: - An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subjected to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and it is also amenable to analysis under statistical mechanics
Complete answer:
According to the first law of thermodynamics,
$\Delta U = q + W$
$W = \Delta U - q$ ---(i)
Here ΔU is the change in the internal energy system and W is the work done by the system.
We know
$W = P\Delta V$----(ii)
From (i) & (ii)
$P\Delta V = \Delta U - q$
$\Delta U = q + P\Delta V$---(iii)
Also, we know
$\Delta U = n{C_V}\Delta T$
Initial internal energy of n moles of diatomic gas is
${U_1} = n\left( {\dfrac{6}{2}R} \right){T_1}$=$3nR{T_1}$
Now, Internal energy of gas after heating is
${U_2} = n\left( {\dfrac{6}{2}R} \right){T_2}$=$3nR{T_2}$
Therefore,
$\Delta U = U_2 - U_1$
$\Delta U = 3nR{T_2} - 3nR{T_1}$
$\Delta U = 3nR({T_2} - {T_1})$
$\Delta U = 3nR\Delta T$
We know that in ideal gas equation,
$PV = nRT$
$P\Delta V = nR\Delta T$
$\Delta U = 3P\Delta V$---(iv)
From (iii) and (iv)
$3P\Delta V = q + P\Delta V$
$2P\Delta V = q$
$P\Delta V = \dfrac{q}{2}$
$W = \dfrac{{800}}{2}$
W=400 Cal from (i)
Hence option C is correct i.e., work done is 400 Cal
Note: - An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subjected to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and it is also amenable to analysis under statistical mechanics
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE