Answer
Verified
498.3k+ views
Hint: First of all assume the time taken by a larger pipe to fill the pool as ‘T’ hours. From this, we will get the time for a smaller pipe as well. Then find the capacity of the pool filled by each of the pipes in one hour. Then use,
(Pool filled by the pipe of larger diameter in 4 hours) + (Pool filled by the pipe of smaller diameter in 9 hours) = \[\dfrac{1}{2}\] where ‘L’ is the total capacity of the pool.
Complete step-by-step answer:
Here we are given two pipes, one of larger diameter and other of smaller diameter which takes 4 hours and 9 hours respectively together to fill half of the pool. Also, we are given that pipe of the smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool. We have to find the time taken by each pipe to separately fill the pool.
Let us consider the total capacity of the pool to be ‘L’ liters.
Also, let us assume that a pipe of larger diameter takes ‘T’ hours to fill this pool.
Since this pipe takes ‘T’ hours to fill ‘L’ liters. Therefore, in 1 hour, it would fill \[=\dfrac{L}{T}\text{liters}\].
So, in 4 hours this pipe of larger diameter would fill \[=4\times \dfrac{L}{T}\text{liters}.....\left( i \right)\]
Now, we are also given that the pipe of the smaller diameter takes 10 more hours to fill the pool as compared to the pipe of the larger diameter. So, we get,
The time taken by a smaller pipe to fill the pool = (T + 10) hours.
Since this pipe takes ‘(T + 10)’ hours to fill ‘L’ liters, therefore in 1 hour, it would fill \[=\dfrac{L}{\left( T+10 \right)}\text{liters}\].
So, in 9 hours this pipe of smaller diameter would fill \[=9\times \dfrac{L}{\left( T+10 \right)}\text{liters}....\left( ii \right)\]
Now, we are given that pipe of larger diameter in 4 hours and pipe of smaller diameter in 9 hours together fills half of the pool, that is, \[\dfrac{L}{2}\text{liters}\]. So, we get,
(Pool filled by the pipe of larger diameter in 4 hours) + (Pool filled by the pipe of smaller diameter in 9 hours) = \[\dfrac{L}{2}\]
By substituting the values from equation (i) and (ii), we get,
\[\dfrac{4L}{T}+\dfrac{9L}{T+10}=\dfrac{L}{2}\]
By taking out ‘L’ common from both the sides and canceling it, we get,
\[\dfrac{4}{T}+\dfrac{9}{T+10}=\dfrac{1}{2}\]
By simplifying the above equation, we get,
\[\dfrac{4\left( T+10 \right)+9T}{T\left( T+10 \right)}=\dfrac{1}{2}\]
By cross multiplying the above equation, we get,
\[2\left( 4T+40+9T \right)={{T}^{2}}+10T\]
\[\Rightarrow 2\left( 13T+40 \right)={{T}^{2}}+10T\]
\[\Rightarrow 26T+80={{T}^{2}}+10T\]
By taking all the terms to one side, we get,
\[\Rightarrow {{T}^{2}}+10T-26T-80=0\]
Or, \[{{T}^{2}}-16T-80=0\]
Here, we can write \[16T=20T-4T\], so we get,
\[\Rightarrow {{T}^{2}}-20T+4T-80=0\]
We can also write the above equation as,
\[T\left( T-20 \right)+4\left( T-20 \right)=0\]
By taking out (T – 20) common, we get,
\[\left( T-20 \right)\left( T+4 \right)=0\]
We get, T = 20 and T = – 4
Since we know that the value of T can’t be negative, hence we get T = 20 hours.
Therefore, we get the total time taken by the pipe of larger diameter to fill the pool is equal to 20 hours.
Also, we get the total time taken by the pipe of smaller diameter to fill the pool is equal to (T + 10) = 30 hours.
Note: In these types of questions, students should always use the approach of the unitary method to solve the questions, that is, always calculate for 1 unit and they multiply it with the number of units you are asked for. Also, students can cross-check their answer by substituting the value of T = 20 hours back in the equation and checking if LHS = RHS or not.
(Pool filled by the pipe of larger diameter in 4 hours) + (Pool filled by the pipe of smaller diameter in 9 hours) = \[\dfrac{1}{2}\] where ‘L’ is the total capacity of the pool.
Complete step-by-step answer:
Here we are given two pipes, one of larger diameter and other of smaller diameter which takes 4 hours and 9 hours respectively together to fill half of the pool. Also, we are given that pipe of the smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool. We have to find the time taken by each pipe to separately fill the pool.
Let us consider the total capacity of the pool to be ‘L’ liters.
Also, let us assume that a pipe of larger diameter takes ‘T’ hours to fill this pool.
Since this pipe takes ‘T’ hours to fill ‘L’ liters. Therefore, in 1 hour, it would fill \[=\dfrac{L}{T}\text{liters}\].
So, in 4 hours this pipe of larger diameter would fill \[=4\times \dfrac{L}{T}\text{liters}.....\left( i \right)\]
Now, we are also given that the pipe of the smaller diameter takes 10 more hours to fill the pool as compared to the pipe of the larger diameter. So, we get,
The time taken by a smaller pipe to fill the pool = (T + 10) hours.
Since this pipe takes ‘(T + 10)’ hours to fill ‘L’ liters, therefore in 1 hour, it would fill \[=\dfrac{L}{\left( T+10 \right)}\text{liters}\].
So, in 9 hours this pipe of smaller diameter would fill \[=9\times \dfrac{L}{\left( T+10 \right)}\text{liters}....\left( ii \right)\]
Now, we are given that pipe of larger diameter in 4 hours and pipe of smaller diameter in 9 hours together fills half of the pool, that is, \[\dfrac{L}{2}\text{liters}\]. So, we get,
(Pool filled by the pipe of larger diameter in 4 hours) + (Pool filled by the pipe of smaller diameter in 9 hours) = \[\dfrac{L}{2}\]
By substituting the values from equation (i) and (ii), we get,
\[\dfrac{4L}{T}+\dfrac{9L}{T+10}=\dfrac{L}{2}\]
By taking out ‘L’ common from both the sides and canceling it, we get,
\[\dfrac{4}{T}+\dfrac{9}{T+10}=\dfrac{1}{2}\]
By simplifying the above equation, we get,
\[\dfrac{4\left( T+10 \right)+9T}{T\left( T+10 \right)}=\dfrac{1}{2}\]
By cross multiplying the above equation, we get,
\[2\left( 4T+40+9T \right)={{T}^{2}}+10T\]
\[\Rightarrow 2\left( 13T+40 \right)={{T}^{2}}+10T\]
\[\Rightarrow 26T+80={{T}^{2}}+10T\]
By taking all the terms to one side, we get,
\[\Rightarrow {{T}^{2}}+10T-26T-80=0\]
Or, \[{{T}^{2}}-16T-80=0\]
Here, we can write \[16T=20T-4T\], so we get,
\[\Rightarrow {{T}^{2}}-20T+4T-80=0\]
We can also write the above equation as,
\[T\left( T-20 \right)+4\left( T-20 \right)=0\]
By taking out (T – 20) common, we get,
\[\left( T-20 \right)\left( T+4 \right)=0\]
We get, T = 20 and T = – 4
Since we know that the value of T can’t be negative, hence we get T = 20 hours.
Therefore, we get the total time taken by the pipe of larger diameter to fill the pool is equal to 20 hours.
Also, we get the total time taken by the pipe of smaller diameter to fill the pool is equal to (T + 10) = 30 hours.
Note: In these types of questions, students should always use the approach of the unitary method to solve the questions, that is, always calculate for 1 unit and they multiply it with the number of units you are asked for. Also, students can cross-check their answer by substituting the value of T = 20 hours back in the equation and checking if LHS = RHS or not.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE