Answer
Verified
497.4k+ views
Hint: We can write the expression for volume of a balloon and from there we find the rate of change. Volume of a sphere is given by $\dfrac{4}{3}\pi {{r}^{3}}$ . To find Rate of change we use derivatives, so we can write the rate of change of volume with time by differentiating volume with respect to time.
Complete step-by-step answer:
First of all we collect the information which is given in the question which is,
Balloon always remains spherical $\Rightarrow $ Volume of balloon $=\dfrac{4}{3}\pi {{r}^{3}}$
Balloon is being inflated $\Rightarrow \dfrac{dV}{dt}=900c{{m}^{3}}$ which is positive as we are pumping air in and the volume is increasing.
Now we need to find out the rate at which the radius of the balloon increases. For this we will write-
$V=\dfrac{4}{3}\pi {{r}^{3}}$
Differentiating both sides with respect to time we have,
$\begin{align}
& \dfrac{dV}{dt}=\left( \dfrac{4}{3}\pi \right)\dfrac{d}{dt}({{r}^{3}}) \\
& =\left( \dfrac{4}{3}\pi \right)(3{{r}^{2}})\dfrac{dr}{dt} \\
\end{align}$
On further simplification we have,
$\dfrac{dV}{dt}=4\pi {{r}^{2}}\dfrac{dr}{dt}$
We are given $\dfrac{dV}{dt}=900c{{m}^{3}}$ and we need to find out $\dfrac{dr}{dt}$ when r= 15 cm.
Therefore we write,
$\dfrac{dr}{dt}=\dfrac{1}{4\pi {{r}^{2}}}\dfrac{dV}{dt}$
Substituting r=15 and $\dfrac{dV}{dt}=900c{{m}^{3}}$ we have,
$\dfrac{dr}{dt}=\dfrac{1}{4\pi {{(15)}^{2}}}.900$ cm/s
On simplifying we have,
$\dfrac{dr}{dt}=\dfrac{1}{\pi }cm/s$
Hence, the answer is $\dfrac{1}{\pi }cm/s$ .
Note:
There are a number of things to keep in mind. First of all while differentiating we must take care about with respect to what we are differentiating. If we differentiate with respect to ‘r’ we will not get anything useful. And we should also keep in mind about the units, which will also help us in understanding with respect to what we need to differentiate. We should also keep in mind the sign of rate of change as rate of change may be increasing as well as decreasing. Increasing rate of change will have positive signs and decreasing rate of change will have negative signs.
Complete step-by-step answer:
First of all we collect the information which is given in the question which is,
Balloon always remains spherical $\Rightarrow $ Volume of balloon $=\dfrac{4}{3}\pi {{r}^{3}}$
Balloon is being inflated $\Rightarrow \dfrac{dV}{dt}=900c{{m}^{3}}$ which is positive as we are pumping air in and the volume is increasing.
Now we need to find out the rate at which the radius of the balloon increases. For this we will write-
$V=\dfrac{4}{3}\pi {{r}^{3}}$
Differentiating both sides with respect to time we have,
$\begin{align}
& \dfrac{dV}{dt}=\left( \dfrac{4}{3}\pi \right)\dfrac{d}{dt}({{r}^{3}}) \\
& =\left( \dfrac{4}{3}\pi \right)(3{{r}^{2}})\dfrac{dr}{dt} \\
\end{align}$
On further simplification we have,
$\dfrac{dV}{dt}=4\pi {{r}^{2}}\dfrac{dr}{dt}$
We are given $\dfrac{dV}{dt}=900c{{m}^{3}}$ and we need to find out $\dfrac{dr}{dt}$ when r= 15 cm.
Therefore we write,
$\dfrac{dr}{dt}=\dfrac{1}{4\pi {{r}^{2}}}\dfrac{dV}{dt}$
Substituting r=15 and $\dfrac{dV}{dt}=900c{{m}^{3}}$ we have,
$\dfrac{dr}{dt}=\dfrac{1}{4\pi {{(15)}^{2}}}.900$ cm/s
On simplifying we have,
$\dfrac{dr}{dt}=\dfrac{1}{\pi }cm/s$
Hence, the answer is $\dfrac{1}{\pi }cm/s$ .
Note:
There are a number of things to keep in mind. First of all while differentiating we must take care about with respect to what we are differentiating. If we differentiate with respect to ‘r’ we will not get anything useful. And we should also keep in mind about the units, which will also help us in understanding with respect to what we need to differentiate. We should also keep in mind the sign of rate of change as rate of change may be increasing as well as decreasing. Increasing rate of change will have positive signs and decreasing rate of change will have negative signs.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE