Answer
Verified
445.8k+ views
Hint
In this equation first of all we draw the diagram for the given condition. After obtaining the diagram we can find the remaining angles then we can resolve the components in terms of $\sin \theta $ and $\cos \theta $then applying the formula i.e. $\sin \theta = \dfrac{{perpendicular}}{{hypotenuse}}$ and $\cos \theta = \dfrac{{base}}{{hypotenuse}}$. We can find the value of base, perpendicular and hypotenuse from the diagram and after substituting the values we get the required value of AD.
Complete step by step answer
First of all, we draw the diagram by using the given conditions. Firstly, mark the directions north, south, east and west. After that let a plane is flying at an angle of 300 west of north then mark this angle on diagram as ${\theta _1} = {30^0}$
Now we have to find how far west of A is B i.e. we have to find the value of AD as shown in diagram.
Now as the angle between north and west direction is 900 and it is given that ${\theta _1} = {30^0}$ then we can find the value of $θ_2$ i.e. ${\theta _2} = {90^0} - {\theta _1} = {90^0} - {30^0} = {60^0}$
Now it is also given that the distance of AB = 1780km
We have to find the value of AD.
From the diagram, hypotenuse is given and we have to find the value of base with respect to the angle $θ_2$, therefore we will use the formula of i.e. $\cos \theta = \dfrac{{base}}{{hypotenuse}}$
As hypotenuse = AB = 1780km
Angle ${\theta _2} = {60^0}$
On substituting the values, we get
$ \Rightarrow \cos 60 = \dfrac{{AD}}{{1780}}$
As $\cos 60 = \dfrac{1}{2}$then above equation become
$ \Rightarrow AD = \dfrac{1}{2} \times 1780$
$ \Rightarrow AD = 890km$
Hence, option (D) is correct.
Note
Here, care must be taken for making the diagram and it must be noticed that we can solve this question by using the angle 300.
For this first resolve the components of angle 300 i.e. $AC = AB\cos 30$ and $AD = AB\sin 30$
As we also know that $\sin 30 = \dfrac{1}{2}$then $AD = 1780 \times \dfrac{1}{2} = 890km$. Which is same as above
Here, care must be taken for observing the question for example if instead of how far west of A is B, he asked how far north of A is B then we need to find the value of AC i.e. $AC = AB\cos 30$, on substituting the values we get $AC = 1780 \times \dfrac{{\sqrt 3 }}{2} \approx 1542km$
In this equation first of all we draw the diagram for the given condition. After obtaining the diagram we can find the remaining angles then we can resolve the components in terms of $\sin \theta $ and $\cos \theta $then applying the formula i.e. $\sin \theta = \dfrac{{perpendicular}}{{hypotenuse}}$ and $\cos \theta = \dfrac{{base}}{{hypotenuse}}$. We can find the value of base, perpendicular and hypotenuse from the diagram and after substituting the values we get the required value of AD.
Complete step by step answer
First of all, we draw the diagram by using the given conditions. Firstly, mark the directions north, south, east and west. After that let a plane is flying at an angle of 300 west of north then mark this angle on diagram as ${\theta _1} = {30^0}$
Now we have to find how far west of A is B i.e. we have to find the value of AD as shown in diagram.
Now as the angle between north and west direction is 900 and it is given that ${\theta _1} = {30^0}$ then we can find the value of $θ_2$ i.e. ${\theta _2} = {90^0} - {\theta _1} = {90^0} - {30^0} = {60^0}$
Now it is also given that the distance of AB = 1780km
We have to find the value of AD.
From the diagram, hypotenuse is given and we have to find the value of base with respect to the angle $θ_2$, therefore we will use the formula of i.e. $\cos \theta = \dfrac{{base}}{{hypotenuse}}$
As hypotenuse = AB = 1780km
Angle ${\theta _2} = {60^0}$
On substituting the values, we get
$ \Rightarrow \cos 60 = \dfrac{{AD}}{{1780}}$
As $\cos 60 = \dfrac{1}{2}$then above equation become
$ \Rightarrow AD = \dfrac{1}{2} \times 1780$
$ \Rightarrow AD = 890km$
Hence, option (D) is correct.
Note
Here, care must be taken for making the diagram and it must be noticed that we can solve this question by using the angle 300.
For this first resolve the components of angle 300 i.e. $AC = AB\cos 30$ and $AD = AB\sin 30$
As we also know that $\sin 30 = \dfrac{1}{2}$then $AD = 1780 \times \dfrac{1}{2} = 890km$. Which is same as above
Here, care must be taken for observing the question for example if instead of how far west of A is B, he asked how far north of A is B then we need to find the value of AC i.e. $AC = AB\cos 30$, on substituting the values we get $AC = 1780 \times \dfrac{{\sqrt 3 }}{2} \approx 1542km$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE