
Triangle has sides $5cm,{\text{ }}12cm,$ and $13cm$. Find the length of the perpendicular from the opposite vertex to the side whose length is $13cm$.
Answer
620.7k+ views
Hint: In this question we will use the area of the right angle triangle that is half multiplied by its base and perpendicular, by considering the other base and perpendicular of the same triangle then we will equate both areas.
Complete step-by-step answer:
Let $AB = 5cm,{\text{ }}BC = 12cm,{\text{ }}CA = 13cm$
So, these sides makes a right angle triangle because
$
{\left( {CA} \right)^2} = {\left( {AB} \right)^2} + {\left( {BC} \right)^2} \\
{13^2} = {5^2} + {12^2} = 169 = {13^2} \\
$
Therefore ABC is a right angle triangle at B
Let BD be the perpendicular on side AC
Let $BD = xcm$
From figure the area of right angle triangle is half multiply by perpendicular time’s base
\[
\Delta ABC = \dfrac{1}{2}\left( {AB} \right)\left( {BC} \right) = \dfrac{1}{2}\left( {BD} \right)\left( {AC} \right) \\
= \dfrac{1}{2}\left( 5 \right)\left( {12} \right) = \dfrac{1}{2}\left( x \right)\left( {13} \right) \\
\Rightarrow 60 = 13x \\
\Rightarrow x = \dfrac{{60}}{{13}}cm \\
\]
So, this is the required perpendicular distance from the opposite vertex to the side whose length is $13cm$.
Note: In such types of questions first draw the pictorial representation of the given problem, then check whether it is right angle triangle or not if it is then using the formula of area of triangle which is half multiply by perpendicular time’s base, then we can easily calculated the length of the perpendicular from the opposite vertex to the side whose length is $13cm$.
Complete step-by-step answer:
Let $AB = 5cm,{\text{ }}BC = 12cm,{\text{ }}CA = 13cm$
So, these sides makes a right angle triangle because
$
{\left( {CA} \right)^2} = {\left( {AB} \right)^2} + {\left( {BC} \right)^2} \\
{13^2} = {5^2} + {12^2} = 169 = {13^2} \\
$
Therefore ABC is a right angle triangle at B
Let BD be the perpendicular on side AC
Let $BD = xcm$
From figure the area of right angle triangle is half multiply by perpendicular time’s base
\[
\Delta ABC = \dfrac{1}{2}\left( {AB} \right)\left( {BC} \right) = \dfrac{1}{2}\left( {BD} \right)\left( {AC} \right) \\
= \dfrac{1}{2}\left( 5 \right)\left( {12} \right) = \dfrac{1}{2}\left( x \right)\left( {13} \right) \\
\Rightarrow 60 = 13x \\
\Rightarrow x = \dfrac{{60}}{{13}}cm \\
\]
So, this is the required perpendicular distance from the opposite vertex to the side whose length is $13cm$.
Note: In such types of questions first draw the pictorial representation of the given problem, then check whether it is right angle triangle or not if it is then using the formula of area of triangle which is half multiply by perpendicular time’s base, then we can easily calculated the length of the perpendicular from the opposite vertex to the side whose length is $13cm$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

