How many triangles can be formed by joining the vertices of a hexagon?
A. 31
B. 25
C. 20
D. 60
Answer
Verified
476.4k+ views
Hint: As we know that hexagon has \[6\] vertices means \[6\] points and the triangle has \[3\] points means a triangle need \[3\] vertices to be formed. Then, the numbers of triangles that can be formed by joining the vertices of a hexagon can be calculated by applying the concept of combination.
Complete step by step solution:
The number of vertices in a hexagon is \[6\].
The number of vertices in a triangle is \[3\].
That means to make a triangle we need \[3\] vertices.
So,\[6\]is the total number of vertices in hexagons, and out of those 6 vertices, 3 vertices that being chosen at a time to make a triangle.
By applying the formula of combination:
\[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] where, n is the total numbers of objects and r is the number of objects to be chosen as a time.
Therefore,
\[{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( {6 - 3} \right)!}} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}}\]
By using the values of factorial terms:
We have, \[6!\] can be written as \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\] can be written as \[3 \times 2 \times 1.\]
Replace \[6!\] = \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\]= \[3 \times 2 \times 1\] in the following equation,
\[
{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}} \\
= \dfrac{{6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1\left( {3 \times 2 \times 1} \right)}} = \dfrac{{120}}{6} = 20 \\
\]
$\therefore$ The number of triangles that can be formed by joining the vertices of a hexagon is \[20\]. Hence, option (C) is correct.
Note:
These types of questions always use a combination concept for solving the problem.
Some important definitions you should know
Vertices mean the point where \[2\] or more lines meet.
Combination: Any of the ways we can combine things when the order does not matter.
Combination formula: The formula of combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\], where \[n\] represents the number of items and \[r\] represents the number of the items that being chosen at a time.
The factorial function\[(!)\]: The factorial function means to multiply all whole numbers from the chosen numbers down to \[1\].
The representation of factorial is \[n!\].
Alternatively, you can draw the figure and count the triangles but it becomes complicated.
Complete step by step solution:
The number of vertices in a hexagon is \[6\].
The number of vertices in a triangle is \[3\].
That means to make a triangle we need \[3\] vertices.
So,\[6\]is the total number of vertices in hexagons, and out of those 6 vertices, 3 vertices that being chosen at a time to make a triangle.
By applying the formula of combination:
\[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] where, n is the total numbers of objects and r is the number of objects to be chosen as a time.
Therefore,
\[{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( {6 - 3} \right)!}} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}}\]
By using the values of factorial terms:
We have, \[6!\] can be written as \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\] can be written as \[3 \times 2 \times 1.\]
Replace \[6!\] = \[6 \times 5 \times 4 \times 3 \times 2 \times 1\] and \[3!\]= \[3 \times 2 \times 1\] in the following equation,
\[
{}^6{C_3} = \dfrac{{6!}}{{3! \times \left( 3 \right)!}} \\
= \dfrac{{6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1\left( {3 \times 2 \times 1} \right)}} = \dfrac{{120}}{6} = 20 \\
\]
$\therefore$ The number of triangles that can be formed by joining the vertices of a hexagon is \[20\]. Hence, option (C) is correct.
Note:
These types of questions always use a combination concept for solving the problem.
Some important definitions you should know
Vertices mean the point where \[2\] or more lines meet.
Combination: Any of the ways we can combine things when the order does not matter.
Combination formula: The formula of combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\], where \[n\] represents the number of items and \[r\] represents the number of the items that being chosen at a time.
The factorial function\[(!)\]: The factorial function means to multiply all whole numbers from the chosen numbers down to \[1\].
The representation of factorial is \[n!\].
Alternatively, you can draw the figure and count the triangles but it becomes complicated.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE