
Trisilylamine ${(Si{H_3})_3}N$ :
A.Trigonal pyramidal and acidic
B.Trigonal pyramidal and basic
C.Trigonal pyramidal and neutral
D.Trigonal planar and weakly basic
Answer
569.4k+ views
Hint:To answer this question, you should recall the concept of back bonding and Lewis acids and bases. If there is bond formation between two atoms where one atom is having one vacant orbital and another is having lone pair of electrons, then this electron pair over the atom is donated to that respective vacant orbital. Lewis acids are atoms with vacant orbital and Lewis bases are atoms with a lone pair of electrons available for donation.
Complete step by step answer:
The structure of trisilylamine is trigonal planar due to the presence of back bonding. The answer lies in the concept of back bonding. Silicon has vacant d orbitals. The lone pair on nitrogen provides the vacant d orbital of silicon with electrons.
Hence, \[N - Si{H_3}\] bond gains partial double bond character, i.e. its hybridisation becomes \[s{p^2}\] which is trigonal planar. And due to its ability to donate electron lone pairs, it is basic in nature.
Hence, the correct answer to this question is option D.
Note:
Back bonding occurs between atoms in a molecule in which one atom has a lone pair of electrons and the other has vacant orbital space adjacent to each other. A compound with back bonding has pi-bonding character since it is formed only after the formation of one sigma bond. This allows the molecule to reduce energy, become stable and complete the octet. This phenomenon results in a decrease in bond length and an increase in bond order.
Complete step by step answer:
The structure of trisilylamine is trigonal planar due to the presence of back bonding. The answer lies in the concept of back bonding. Silicon has vacant d orbitals. The lone pair on nitrogen provides the vacant d orbital of silicon with electrons.
Hence, \[N - Si{H_3}\] bond gains partial double bond character, i.e. its hybridisation becomes \[s{p^2}\] which is trigonal planar. And due to its ability to donate electron lone pairs, it is basic in nature.
Hence, the correct answer to this question is option D.
Note:
Back bonding occurs between atoms in a molecule in which one atom has a lone pair of electrons and the other has vacant orbital space adjacent to each other. A compound with back bonding has pi-bonding character since it is formed only after the formation of one sigma bond. This allows the molecule to reduce energy, become stable and complete the octet. This phenomenon results in a decrease in bond length and an increase in bond order.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

