Answer
Verified
496.8k+ views
Hint: Consider any AP whose first term is ‘a’ and the common difference is ‘d’. Write \[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\]. Write equations for terms of an AP and solve them using elimination method to get the value of a, n and d.
Complete step by step answer:
We have an AP whose \[{{4}^{th}},{{42}^{nd}}\] and last term is 0, -95 and -125. We have to find the first term of AP and the number of terms in AP.
Let’s assume that the first term of AP is ‘a’ and the common difference is ‘d’.
We know that we can write the \[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=4\] in the above equation, we have \[{{a}_{4}}=a+\left( 4-1 \right)d\]. Thus, we have \[a+3d=0.....\left( 1 \right)\].
Substituting \[n=42\] in the above equation, we have \[{{a}_{42}}=a+\left( 42-1 \right)d\]. Thus, we have \[a+41d=-95.....\left( 2 \right)\].
Subtracting equation (1) from equation (2), we have \[a+41d-\left( a+3d \right)=-95-0\].
Thus, we have \[38d=-95\Rightarrow d=-\dfrac{95}{38}=-2.5\].
Substituting the value \[d=-2.5\] in equation (1), we have \[a+3\left( -2.5 \right)=0\].
Thus, we have \[a=-7.5\].
We know that the last term of this AP is -125. Let’s assume that there are ‘x’ terms in this AP.
Thus, we have \[{{a}_{x}}=a+\left( x-1 \right)d=-125\].
Substituting \[a=-7.5,d=-2.5\] in the above formula, we have \[-7.5+\left( x-1 \right)\left( -2.5 \right)=-125\].
Simplifying the above equation, we have \[\left( x-1 \right)\left( -2.5 \right)=-117.5\].
Thus, we have \[x-1=\dfrac{-117.5}{-2.5}=47\].
So, we have \[x=47+1=48\].
Hence, the first term of this AP is -7.5 and the number of terms is 48.
Note: One must clearly know the definition of AP. Arithmetic Progression (AP) is the sequence of numbers in which the difference of two consecutive terms is a constant. We can also solve these linear equations by substitution method. We can check if the calculated solutions are correct or not by substituting the values in the equations and checking if they satisfy the equations or not.
Complete step by step answer:
We have an AP whose \[{{4}^{th}},{{42}^{nd}}\] and last term is 0, -95 and -125. We have to find the first term of AP and the number of terms in AP.
Let’s assume that the first term of AP is ‘a’ and the common difference is ‘d’.
We know that we can write the \[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=4\] in the above equation, we have \[{{a}_{4}}=a+\left( 4-1 \right)d\]. Thus, we have \[a+3d=0.....\left( 1 \right)\].
Substituting \[n=42\] in the above equation, we have \[{{a}_{42}}=a+\left( 42-1 \right)d\]. Thus, we have \[a+41d=-95.....\left( 2 \right)\].
Subtracting equation (1) from equation (2), we have \[a+41d-\left( a+3d \right)=-95-0\].
Thus, we have \[38d=-95\Rightarrow d=-\dfrac{95}{38}=-2.5\].
Substituting the value \[d=-2.5\] in equation (1), we have \[a+3\left( -2.5 \right)=0\].
Thus, we have \[a=-7.5\].
We know that the last term of this AP is -125. Let’s assume that there are ‘x’ terms in this AP.
Thus, we have \[{{a}_{x}}=a+\left( x-1 \right)d=-125\].
Substituting \[a=-7.5,d=-2.5\] in the above formula, we have \[-7.5+\left( x-1 \right)\left( -2.5 \right)=-125\].
Simplifying the above equation, we have \[\left( x-1 \right)\left( -2.5 \right)=-117.5\].
Thus, we have \[x-1=\dfrac{-117.5}{-2.5}=47\].
So, we have \[x=47+1=48\].
Hence, the first term of this AP is -7.5 and the number of terms is 48.
Note: One must clearly know the definition of AP. Arithmetic Progression (AP) is the sequence of numbers in which the difference of two consecutive terms is a constant. We can also solve these linear equations by substitution method. We can check if the calculated solutions are correct or not by substituting the values in the equations and checking if they satisfy the equations or not.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE