Answer
Verified
403.3k+ views
Hint – Let ABCD be a parallelogram with $\angle A = \angle B$. Use the concept that the sum of adjacent angles is equal to 180 degrees.
Complete step-by-step solution -
Refer to the figure below of parallelogram ABCD-
We have been given in the question that adjacent angles of a parallelogram are equal.
To find: Measure of each angle of the parallelogram.
Let ABCD be a parallelogram with $\angle A = \angle B$.
Now, we know that: Sum of adjacent angles $ = {180^ \circ }$.
$\angle A + \angle B = {180^ \circ }$
Putting $\angle A = \angle B$ in the above equation, we get-
$
\angle A + \angle A = {180^ \circ } \\
\Rightarrow 2\angle A = {180^ \circ } \\
\Rightarrow \angle A = \angle B = {90^ \circ } \\
$
Now, we know the opposite angles of a parallelogram are equal.
Therefore, $\angle C = \angle A = {90^ \circ }$(Opposite angles)
And also, $\angle D = \angle B = {90^ \circ }$(Opposite angles)
Thus, each angle of the parallelogram measures ${90^ \circ }$.
Thus, the parallelogram with each angle 90 degrees is shown below-
Note – Whenever such types of question appear, assume a parallelogram and then use the conditions given in the question. As mentioned in the solution, the adjacent angles are equal, i.e., $\angle A = \angle B$, so using the concept that the sum of adjacent angles is equal to 180 degrees, find the angles A and B, and then C and D angles can be found out by the property that opposite angles of parallelogram are equal.
Complete step-by-step solution -
Refer to the figure below of parallelogram ABCD-
We have been given in the question that adjacent angles of a parallelogram are equal.
To find: Measure of each angle of the parallelogram.
Let ABCD be a parallelogram with $\angle A = \angle B$.
Now, we know that: Sum of adjacent angles $ = {180^ \circ }$.
$\angle A + \angle B = {180^ \circ }$
Putting $\angle A = \angle B$ in the above equation, we get-
$
\angle A + \angle A = {180^ \circ } \\
\Rightarrow 2\angle A = {180^ \circ } \\
\Rightarrow \angle A = \angle B = {90^ \circ } \\
$
Now, we know the opposite angles of a parallelogram are equal.
Therefore, $\angle C = \angle A = {90^ \circ }$(Opposite angles)
And also, $\angle D = \angle B = {90^ \circ }$(Opposite angles)
Thus, each angle of the parallelogram measures ${90^ \circ }$.
Thus, the parallelogram with each angle 90 degrees is shown below-
Note – Whenever such types of question appear, assume a parallelogram and then use the conditions given in the question. As mentioned in the solution, the adjacent angles are equal, i.e., $\angle A = \angle B$, so using the concept that the sum of adjacent angles is equal to 180 degrees, find the angles A and B, and then C and D angles can be found out by the property that opposite angles of parallelogram are equal.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE