Two cars are travelling in the same direction with a velocity of $ 60\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}$ . They are separated by a distance of $5\,{\rm{km}} $. A truck moving in the opposite direction meets the two cars in a time interval of $3\min$. The velocity of the truck is (in${{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}} $)
A. 20
B. 30
C. 40
D. 60
Answer
Verified
466.8k+ views
Hint: The velocity of a particle is defined as distance covered per unit time taken. When two bodies move in the opposite direction then their velocities add up to calculate the relative velocity and when two bodies are in the same direction then their velocities are subtracted to calculate the relative velocity.
Complete step by step answer:
Given: The velocity of two cars is$60\,{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}$. The distance between two cars and a truck is $5\,{\rm{km}}$. The time taken by the truck to meet cars is $3\,\min $.
The formula to calculate the relative velocity of the truck with respect to cars is ${v_t} = \dfrac{d}{t}$
Here, ${v_t}$ is the relative velocity of the truck, $d$ is the distance covered and $t$ is the time taken to cover the distance.
Substitute $5\,{\rm{km}}$ for$d$ and$3\,\min $ for $t$ in the formula to calculate the relative velocity of the truck.
$
{v_t} = \dfrac{{5\,{\rm{km}}}}{{\left( {3\,\min } \right)\left( {\dfrac{{1\,{\rm{h}}}}{{60\,\min }}} \right)}}\\
= \dfrac{{5\,{\rm{km}}}}{{0.05\,{\rm{h}}}}\\
= 100\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}
$
Since the truck moves in the opposite direction of the cars, thus the formula to calculate the relative velocity of the truck is
${v_t} = v + {v_c}$
Here, $v$ is the velocity of a truck and ${v_c}$ is the velocity of a car.
Substitute $100\,{{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}$ for ${v_t}$ and $60\,{{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}$ for ${v_c}$ in the formula and solve to calculate the velocity of the truck.
$100\,{{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}} = v + 60{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}\\ $
$\implies v = 100{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}} -60{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}\\ $
$ = 40{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}$
Thus, the velocity of truck is $40{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}$
So, the correct answer is “Option C”.
Note:
The relative velocity of the system increases when the particles move in the opposite direction but it decreases when the particles move in the same direction.
Complete step by step answer:
Given: The velocity of two cars is$60\,{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}$. The distance between two cars and a truck is $5\,{\rm{km}}$. The time taken by the truck to meet cars is $3\,\min $.
The formula to calculate the relative velocity of the truck with respect to cars is ${v_t} = \dfrac{d}{t}$
Here, ${v_t}$ is the relative velocity of the truck, $d$ is the distance covered and $t$ is the time taken to cover the distance.
Substitute $5\,{\rm{km}}$ for$d$ and$3\,\min $ for $t$ in the formula to calculate the relative velocity of the truck.
$
{v_t} = \dfrac{{5\,{\rm{km}}}}{{\left( {3\,\min } \right)\left( {\dfrac{{1\,{\rm{h}}}}{{60\,\min }}} \right)}}\\
= \dfrac{{5\,{\rm{km}}}}{{0.05\,{\rm{h}}}}\\
= 100\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}
$
Since the truck moves in the opposite direction of the cars, thus the formula to calculate the relative velocity of the truck is
${v_t} = v + {v_c}$
Here, $v$ is the velocity of a truck and ${v_c}$ is the velocity of a car.
Substitute $100\,{{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}$ for ${v_t}$ and $60\,{{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}$ for ${v_c}$ in the formula and solve to calculate the velocity of the truck.
$100\,{{{\rm{km}}} {\left/ {\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}} = v + 60{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}\\ $
$\implies v = 100{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}} -60{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}\\ $
$ = 40{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right. } {\rm{h}}}$
Thus, the velocity of truck is $40{{{\rm{km}}} {\left/{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.} {\rm{h}}}$
So, the correct answer is “Option C”.
Note:
The relative velocity of the system increases when the particles move in the opposite direction but it decreases when the particles move in the same direction.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE