Answer
Verified
457.5k+ views
Hint: We start solving the problem by drawing the figure representing all the given information. We then find the distance between the centres of both the circles using the Pythagoras theorem. We then find the sine of angle at one of the centres using its definition. We then use this value for the triangle we get with the common chord as one of its sides.
Complete step-by-step answer:
According to the problem, we are given that the two circles whose radii are equal to 4 and 8 intersect at right angles. We need to find the length of the common chord of those circles.
Let us draw the figure representing the given information.
We know that if two circles intersect orthogonally, then the normal at the points of intersection are perpendicular. i.e., the angle at the point C is ${{90}^{\circ }}$ (as we know that the normal passes through the centre of the circle).
From the Pythagoras theorem, we know that the square of the hypotenuse is equal to the sum of the squares of the other two sides. We apply this to triangle ABC.
So, we get ${{d}^{2}}={{8}^{2}}+{{4}^{2}}$.
$\Rightarrow {{d}^{2}}=64+16$.
$\Rightarrow {{d}^{2}}=80$.
$\Rightarrow d=\sqrt{80}$.
$\Rightarrow d=4\sqrt{5}$ ---(1).
Let us find the angle at point B. We know that sine of an angle in a right-angled triangle is defined as the ratio of opposite sides to the hypotenuse.
So, we get $\sin B=\dfrac{4}{4\sqrt{5}}$.
$\Rightarrow \sin B=\dfrac{1}{\sqrt{5}}$ ---(2).
From the figure, we can see that the triangle CFB is a right-angles triangle with right angle at vertex F.
We get $\sin B=\dfrac{x}{8}$.
From equation (2), we get $\dfrac{1}{\sqrt{5}}=\dfrac{x}{8}$.
$\Rightarrow x=\dfrac{8}{\sqrt{5}}$ ---(3).
But we need to find the length of the common chord which is CD. From the figure, we can see that the length of CD is twice the length of the CF.
So, we get the length of the common chord = $2\times \dfrac{8}{\sqrt{5}}=\dfrac{16}{\sqrt{5}}$.
∴ The length of the common chord is $\dfrac{16}{\sqrt{5}}$.
So, the correct answer is “Option A”.
Note: We should know that the common chord intersects the line segment joining the centres perpendicularly. We should not make calculation mistakes while solving this problem. We should not stop solving the problem after finding the value of x as we need the length of the common chord. We can also use the area of the triangle by assuming different sides as base of the triangle (as CF is the altitude in the triangle ABC). Similarly, we can expect problems to find the length of the common chords.
Complete step-by-step answer:
According to the problem, we are given that the two circles whose radii are equal to 4 and 8 intersect at right angles. We need to find the length of the common chord of those circles.
Let us draw the figure representing the given information.
We know that if two circles intersect orthogonally, then the normal at the points of intersection are perpendicular. i.e., the angle at the point C is ${{90}^{\circ }}$ (as we know that the normal passes through the centre of the circle).
From the Pythagoras theorem, we know that the square of the hypotenuse is equal to the sum of the squares of the other two sides. We apply this to triangle ABC.
So, we get ${{d}^{2}}={{8}^{2}}+{{4}^{2}}$.
$\Rightarrow {{d}^{2}}=64+16$.
$\Rightarrow {{d}^{2}}=80$.
$\Rightarrow d=\sqrt{80}$.
$\Rightarrow d=4\sqrt{5}$ ---(1).
Let us find the angle at point B. We know that sine of an angle in a right-angled triangle is defined as the ratio of opposite sides to the hypotenuse.
So, we get $\sin B=\dfrac{4}{4\sqrt{5}}$.
$\Rightarrow \sin B=\dfrac{1}{\sqrt{5}}$ ---(2).
From the figure, we can see that the triangle CFB is a right-angles triangle with right angle at vertex F.
We get $\sin B=\dfrac{x}{8}$.
From equation (2), we get $\dfrac{1}{\sqrt{5}}=\dfrac{x}{8}$.
$\Rightarrow x=\dfrac{8}{\sqrt{5}}$ ---(3).
But we need to find the length of the common chord which is CD. From the figure, we can see that the length of CD is twice the length of the CF.
So, we get the length of the common chord = $2\times \dfrac{8}{\sqrt{5}}=\dfrac{16}{\sqrt{5}}$.
∴ The length of the common chord is $\dfrac{16}{\sqrt{5}}$.
So, the correct answer is “Option A”.
Note: We should know that the common chord intersects the line segment joining the centres perpendicularly. We should not make calculation mistakes while solving this problem. We should not stop solving the problem after finding the value of x as we need the length of the common chord. We can also use the area of the triangle by assuming different sides as base of the triangle (as CF is the altitude in the triangle ABC). Similarly, we can expect problems to find the length of the common chords.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE