Answer
Verified
494.4k+ views
Hint: First of all, find the sum of the remaining terms and then their arithmetic mean. As ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even. Then find the value of \[n\] by substituting it with another variable which is always even (like \[2r\]). So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given the arithmetic mean of the remaining terms when two consecutive terms are removed is \[\dfrac{{105}}{4}\]
Let \[p,p + 1\] be the removed numbers from \[1,2,3,........................,n\] then the remaining terms are \[n - 2\].
Sum of the \[1,2,3,........................,n\] terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now sum of the remaining terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\{ {p + \left( {p + 1} \right)} \right\}\]
The arithmetic mean of remaining terms is \[\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}}\] which equals to \[\dfrac{{105}}{4}\].
\[
\Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\
\Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\
\Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\
\Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\
\Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\
\]
Since ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even.
\[
\Rightarrow 8p = 2{n^2} - 103n + 206 \\
\therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\
\]
Let \[n = 2r\] then
\[
\Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\
\Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\
\Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\
\]
Since ‘\[p\]’ is an integer so \[\left( {1 - r} \right)\] must be divisible by 4.
Let \[r = 4t + 1\] then \[n = 2\left( {4t + 1} \right) = 8t + 2\] and here ‘\[t\]’ is positive
\[
\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\{ {1 - \left( {4t + 1} \right)} \right\}}}{4} \\
\Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\
\Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\
\Rightarrow p = 16{t^2} - 95t + 1 \\
\therefore p = 16{t^2} - 95t + 1 \\
\]
Here \[1 \leqslant p < n\] as \[p,p + 1\] are consecutive terms in \[1,2,3,........................,n\]
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\
\]
Splitting the terms, we have
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\
\Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\
\Rightarrow 16{t^2} \geqslant 95t \\
\Rightarrow t \geqslant \dfrac{{95}}{{16}} \\
\therefore t \geqslant 5.9375 \\
\]
And the other term is
\[
\Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\
\Rightarrow 16{t^2} - 103t - 1 < 0 \\
\]
By using the formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we have
\[
\Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\
\Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\
\Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\
\Rightarrow t = 6.45, - 0.0097 \\
\]
Since ‘\[t\]’ is positive we have \[t < 6.45\]
So, from \[t \geqslant 5.9375{\text{ and }}t < 6.45\] we get \[t = 6\]
As we have \[n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50\]
Therefore, the value of ‘\[n\]’ is \[50\]
Thus, the correct option is C.
Note: As ‘\[t\]’ is an integer we have considered the value which is satisfying the inequalities of \[t\]. In the equation \[p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4}\] , \[4{r^2}\] is divisible by 4. As \[p\] is an integer \[\left( {1 - r} \right)\] must be divisible by 4.
Complete step-by-step answer:
Given the arithmetic mean of the remaining terms when two consecutive terms are removed is \[\dfrac{{105}}{4}\]
Let \[p,p + 1\] be the removed numbers from \[1,2,3,........................,n\] then the remaining terms are \[n - 2\].
Sum of the \[1,2,3,........................,n\] terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now sum of the remaining terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\{ {p + \left( {p + 1} \right)} \right\}\]
The arithmetic mean of remaining terms is \[\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}}\] which equals to \[\dfrac{{105}}{4}\].
\[
\Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\
\Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\
\Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\
\Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\
\Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\
\]
Since ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even.
\[
\Rightarrow 8p = 2{n^2} - 103n + 206 \\
\therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\
\]
Let \[n = 2r\] then
\[
\Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\
\Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\
\Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\
\]
Since ‘\[p\]’ is an integer so \[\left( {1 - r} \right)\] must be divisible by 4.
Let \[r = 4t + 1\] then \[n = 2\left( {4t + 1} \right) = 8t + 2\] and here ‘\[t\]’ is positive
\[
\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\{ {1 - \left( {4t + 1} \right)} \right\}}}{4} \\
\Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\
\Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\
\Rightarrow p = 16{t^2} - 95t + 1 \\
\therefore p = 16{t^2} - 95t + 1 \\
\]
Here \[1 \leqslant p < n\] as \[p,p + 1\] are consecutive terms in \[1,2,3,........................,n\]
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\
\]
Splitting the terms, we have
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\
\Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\
\Rightarrow 16{t^2} \geqslant 95t \\
\Rightarrow t \geqslant \dfrac{{95}}{{16}} \\
\therefore t \geqslant 5.9375 \\
\]
And the other term is
\[
\Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\
\Rightarrow 16{t^2} - 103t - 1 < 0 \\
\]
By using the formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we have
\[
\Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\
\Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\
\Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\
\Rightarrow t = 6.45, - 0.0097 \\
\]
Since ‘\[t\]’ is positive we have \[t < 6.45\]
So, from \[t \geqslant 5.9375{\text{ and }}t < 6.45\] we get \[t = 6\]
As we have \[n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50\]
Therefore, the value of ‘\[n\]’ is \[50\]
Thus, the correct option is C.
Note: As ‘\[t\]’ is an integer we have considered the value which is satisfying the inequalities of \[t\]. In the equation \[p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4}\] , \[4{r^2}\] is divisible by 4. As \[p\] is an integer \[\left( {1 - r} \right)\] must be divisible by 4.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE