Answer
Verified
483.9k+ views
Hint: First of all, find the sum of the remaining terms and then their arithmetic mean. As ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even. Then find the value of \[n\] by substituting it with another variable which is always even (like \[2r\]). So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given the arithmetic mean of the remaining terms when two consecutive terms are removed is \[\dfrac{{105}}{4}\]
Let \[p,p + 1\] be the removed numbers from \[1,2,3,........................,n\] then the remaining terms are \[n - 2\].
Sum of the \[1,2,3,........................,n\] terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now sum of the remaining terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\{ {p + \left( {p + 1} \right)} \right\}\]
The arithmetic mean of remaining terms is \[\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}}\] which equals to \[\dfrac{{105}}{4}\].
\[
\Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\
\Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\
\Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\
\Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\
\Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\
\]
Since ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even.
\[
\Rightarrow 8p = 2{n^2} - 103n + 206 \\
\therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\
\]
Let \[n = 2r\] then
\[
\Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\
\Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\
\Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\
\]
Since ‘\[p\]’ is an integer so \[\left( {1 - r} \right)\] must be divisible by 4.
Let \[r = 4t + 1\] then \[n = 2\left( {4t + 1} \right) = 8t + 2\] and here ‘\[t\]’ is positive
\[
\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\{ {1 - \left( {4t + 1} \right)} \right\}}}{4} \\
\Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\
\Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\
\Rightarrow p = 16{t^2} - 95t + 1 \\
\therefore p = 16{t^2} - 95t + 1 \\
\]
Here \[1 \leqslant p < n\] as \[p,p + 1\] are consecutive terms in \[1,2,3,........................,n\]
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\
\]
Splitting the terms, we have
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\
\Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\
\Rightarrow 16{t^2} \geqslant 95t \\
\Rightarrow t \geqslant \dfrac{{95}}{{16}} \\
\therefore t \geqslant 5.9375 \\
\]
And the other term is
\[
\Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\
\Rightarrow 16{t^2} - 103t - 1 < 0 \\
\]
By using the formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we have
\[
\Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\
\Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\
\Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\
\Rightarrow t = 6.45, - 0.0097 \\
\]
Since ‘\[t\]’ is positive we have \[t < 6.45\]
So, from \[t \geqslant 5.9375{\text{ and }}t < 6.45\] we get \[t = 6\]
As we have \[n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50\]
Therefore, the value of ‘\[n\]’ is \[50\]
Thus, the correct option is C.
Note: As ‘\[t\]’ is an integer we have considered the value which is satisfying the inequalities of \[t\]. In the equation \[p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4}\] , \[4{r^2}\] is divisible by 4. As \[p\] is an integer \[\left( {1 - r} \right)\] must be divisible by 4.
Complete step-by-step answer:
Given the arithmetic mean of the remaining terms when two consecutive terms are removed is \[\dfrac{{105}}{4}\]
Let \[p,p + 1\] be the removed numbers from \[1,2,3,........................,n\] then the remaining terms are \[n - 2\].
Sum of the \[1,2,3,........................,n\] terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now sum of the remaining terms \[ = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\{ {p + \left( {p + 1} \right)} \right\}\]
The arithmetic mean of remaining terms is \[\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}}\] which equals to \[\dfrac{{105}}{4}\].
\[
\Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\
\Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\
\Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\
\Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\
\Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\
\]
Since ‘\[p\]’ and ‘\[n\]’ are integers, so ‘\[n\]’ must be even.
\[
\Rightarrow 8p = 2{n^2} - 103n + 206 \\
\therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\
\]
Let \[n = 2r\] then
\[
\Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\
\Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\
\Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\
\]
Since ‘\[p\]’ is an integer so \[\left( {1 - r} \right)\] must be divisible by 4.
Let \[r = 4t + 1\] then \[n = 2\left( {4t + 1} \right) = 8t + 2\] and here ‘\[t\]’ is positive
\[
\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\{ {1 - \left( {4t + 1} \right)} \right\}}}{4} \\
\Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\
\Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\
\Rightarrow p = 16{t^2} - 95t + 1 \\
\therefore p = 16{t^2} - 95t + 1 \\
\]
Here \[1 \leqslant p < n\] as \[p,p + 1\] are consecutive terms in \[1,2,3,........................,n\]
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\
\]
Splitting the terms, we have
\[
\Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\
\Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\
\Rightarrow 16{t^2} \geqslant 95t \\
\Rightarrow t \geqslant \dfrac{{95}}{{16}} \\
\therefore t \geqslant 5.9375 \\
\]
And the other term is
\[
\Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\
\Rightarrow 16{t^2} - 103t - 1 < 0 \\
\]
By using the formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we have
\[
\Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\
\Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\
\Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\
\Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\
\Rightarrow t = 6.45, - 0.0097 \\
\]
Since ‘\[t\]’ is positive we have \[t < 6.45\]
So, from \[t \geqslant 5.9375{\text{ and }}t < 6.45\] we get \[t = 6\]
As we have \[n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50\]
Therefore, the value of ‘\[n\]’ is \[50\]
Thus, the correct option is C.
Note: As ‘\[t\]’ is an integer we have considered the value which is satisfying the inequalities of \[t\]. In the equation \[p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4}\] , \[4{r^2}\] is divisible by 4. As \[p\] is an integer \[\left( {1 - r} \right)\] must be divisible by 4.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE