Answer
Verified
496.2k+ views
Hint-
In this particular type of question we need to proceed by expressing the sides of the cubes as a and b and finding the ratio between them. Then we need to use it in finding the ratio of surface area of both the cubes.
Complete step-by-step answer:
Let the sides of the cube be a and b.
Then,
We know that volume of a cube = ${side^3}$
Therefore ratio of the volumes = $\dfrac{{{a^3}}}{{{b^3}}}$
But ratio = $1:27$
$
\Rightarrow \dfrac{{{a^3}}}{{{b^3}}} = \dfrac{1}{{27}} \\
\Rightarrow {\left( {\dfrac{a}{b}} \right)^3} = {\left( {\dfrac{1}{3}} \right)^3} \\
\Rightarrow \dfrac{a}{b} = \dfrac{1}{3} \\
$
Therefore,
Ratio of the surface areas = $\dfrac{{6{a^2}}}{{6{b^2}}}$
(since surface area of the cube = $6 \times sid{e^2}$ )
$
= \dfrac{{{a^2}}}{{{b^2}}} \\
= {\left( {\dfrac{a}{b}} \right)^2} \\
= {\left( {\dfrac{1}{3}} \right)^2}{\text{ }}\left( {{\text{putting value of }}\dfrac{a}{b}{\text{ from above}}} \right) \\
= \dfrac{1}{9} \\
= 1:9 \\
$
Therefore ratio of the surface areas =$1:9$.
Note- Always recall the formula of volume and surface area of three dimensional figures like cube. Note that a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.
In this particular type of question we need to proceed by expressing the sides of the cubes as a and b and finding the ratio between them. Then we need to use it in finding the ratio of surface area of both the cubes.
Complete step-by-step answer:
Let the sides of the cube be a and b.
Then,
We know that volume of a cube = ${side^3}$
Therefore ratio of the volumes = $\dfrac{{{a^3}}}{{{b^3}}}$
But ratio = $1:27$
$
\Rightarrow \dfrac{{{a^3}}}{{{b^3}}} = \dfrac{1}{{27}} \\
\Rightarrow {\left( {\dfrac{a}{b}} \right)^3} = {\left( {\dfrac{1}{3}} \right)^3} \\
\Rightarrow \dfrac{a}{b} = \dfrac{1}{3} \\
$
Therefore,
Ratio of the surface areas = $\dfrac{{6{a^2}}}{{6{b^2}}}$
(since surface area of the cube = $6 \times sid{e^2}$ )
$
= \dfrac{{{a^2}}}{{{b^2}}} \\
= {\left( {\dfrac{a}{b}} \right)^2} \\
= {\left( {\dfrac{1}{3}} \right)^2}{\text{ }}\left( {{\text{putting value of }}\dfrac{a}{b}{\text{ from above}}} \right) \\
= \dfrac{1}{9} \\
= 1:9 \\
$
Therefore ratio of the surface areas =$1:9$.
Note- Always recall the formula of volume and surface area of three dimensional figures like cube. Note that a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.
Recently Updated Pages
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Trending doubts
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Which one of the following is a leguminous crop A Pulses class 8 social science CBSE
State the differences between manure and fertilize class 8 biology CBSE
Who is known as Tutie Hind A Saint Kabir B Amir Khusro class 8 social science CBSE
Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE