Answer
Verified
498.9k+ views
Hint: While solving this problem of probability, we start with finding the total possible number of outcomes in this problem. The number of days from Tuesday to Saturday (including Tuesday and Saturday) is 5. Further, we calculate the outcome for two people (Shyam and Ekta), the total outcomes are $5\times 5=25$.
Complete step-by-step answer:
To make this clear, the possible outcomes are listed below
(T, T) (T, W) (T, Th) (T, F) (T, S)
(W, T) (W, W) (W, Th) (W, F) (W, S)
(Th, T) (Th, W) (Th, Th) (Th, F) (Th, S)
(F, T) (F, W) (F, Th) (F, F) (F, S)
(S, T) (S, W) (S, Th) (S, F) (S, S)
Where,
T stands for Tuesday
W stands for Wednesday
Th stands for Thursday
F stands for Friday
S stands for Saturday
We can clearly see that the listed outcomes are 25.
(a) the same days
From the list of outcomes, we can clearly see that for Ekta and Shyam to visit the particular shop on the same day, the desirable number of outcomes are 5. These are (T, T), (W, W), (Th, Th), (F, F), (S, S). Now,
$\begin{align}
& \text{probability}=\dfrac{\text{desired number of outcomes}}{\text{total number of outcomes}} \\
& \text{probability}=\text{ }\dfrac{5}{25} \\
& \text{probability}=\text{ }\dfrac{1}{5} \\
\end{align}$
(b) consecutive days
From the list of outcomes, we can clearly see that for Ekta and Shyam to visit the particular shop on consecutive days, the desirable number of outcomes are 8. These are (T, W), (W, T), (W, Th), (Th, W), (Th, F), (F, Th), (F, S), (S, F).
$\begin{align}
& \text{probability}=\dfrac{\text{desired number of outcomes}}{\text{total number of outcomes}} \\
& \text{probability}=\text{ }\dfrac{8}{25} \\
\end{align}$
(c) different days
To solve this, we simply need to subtract the probability for Ekta and Shyam to visit on the same days from 1. To explain this,
Probability (same days) + Probability (different days) = 1
Since, when Ekta and Shyam don’t visit a particular shop on the same day, they visit the particular shop on different days. Thus, the sum of their probabilities should add up to 1.
\[\begin{align}
& \text{probability}=\text{ }1-\dfrac{1}{5} \\
& \text{probability}=\text{ }\dfrac{4}{5} \\
\end{align}\]
Note: A common mistake while calculating the probability for Ekta and Shyam to visit on consecutive days is to forget in counting all the desirable number of outcomes. To explain, one can forget to count (T, W), (W, T) as two separate outcomes and thus land up with the desired number of outcomes as 4. (namely, (T, W), (W, Th), (Th, F), (F, S)). This may lead to the calculation of incorrect probability.
Complete step-by-step answer:
To make this clear, the possible outcomes are listed below
(T, T) (T, W) (T, Th) (T, F) (T, S)
(W, T) (W, W) (W, Th) (W, F) (W, S)
(Th, T) (Th, W) (Th, Th) (Th, F) (Th, S)
(F, T) (F, W) (F, Th) (F, F) (F, S)
(S, T) (S, W) (S, Th) (S, F) (S, S)
Where,
T stands for Tuesday
W stands for Wednesday
Th stands for Thursday
F stands for Friday
S stands for Saturday
We can clearly see that the listed outcomes are 25.
(a) the same days
From the list of outcomes, we can clearly see that for Ekta and Shyam to visit the particular shop on the same day, the desirable number of outcomes are 5. These are (T, T), (W, W), (Th, Th), (F, F), (S, S). Now,
$\begin{align}
& \text{probability}=\dfrac{\text{desired number of outcomes}}{\text{total number of outcomes}} \\
& \text{probability}=\text{ }\dfrac{5}{25} \\
& \text{probability}=\text{ }\dfrac{1}{5} \\
\end{align}$
(b) consecutive days
From the list of outcomes, we can clearly see that for Ekta and Shyam to visit the particular shop on consecutive days, the desirable number of outcomes are 8. These are (T, W), (W, T), (W, Th), (Th, W), (Th, F), (F, Th), (F, S), (S, F).
$\begin{align}
& \text{probability}=\dfrac{\text{desired number of outcomes}}{\text{total number of outcomes}} \\
& \text{probability}=\text{ }\dfrac{8}{25} \\
\end{align}$
(c) different days
To solve this, we simply need to subtract the probability for Ekta and Shyam to visit on the same days from 1. To explain this,
Probability (same days) + Probability (different days) = 1
Since, when Ekta and Shyam don’t visit a particular shop on the same day, they visit the particular shop on different days. Thus, the sum of their probabilities should add up to 1.
\[\begin{align}
& \text{probability}=\text{ }1-\dfrac{1}{5} \\
& \text{probability}=\text{ }\dfrac{4}{5} \\
\end{align}\]
Note: A common mistake while calculating the probability for Ekta and Shyam to visit on consecutive days is to forget in counting all the desirable number of outcomes. To explain, one can forget to count (T, W), (W, T) as two separate outcomes and thus land up with the desired number of outcomes as 4. (namely, (T, W), (W, Th), (Th, F), (F, S)). This may lead to the calculation of incorrect probability.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE