
Two dice are thrown. Describe the sample space of this experiment.
Answer
570.9k+ views
Hint:
1) If two dice are thrown, there are 6 × 6 = 36 different outcomes possible.
2) The sample space of a random experiment is the set of all possible outcomes.
3) The sample space is represented using S.
4) A subset of the sample space of an experiment is called an event represented by E.
Complete step by step solution:
When two dice are thrown, we may get an outcome as (1, 1), (2, 5), (1, 6), (3, 1) etc.
Since, there are six different possible outcomes for a dice, the set (S) of all the outcomes can be listed as follows:
\[\left( {1,{\text{ }}1} \right),{\text{ }}\left( {1,{\text{ }}2} \right),{\text{ }}\left( {1,{\text{ }}3} \right),{\text{ }}\left( {1,{\text{ }}4} \right),{\text{ }}\left( {1,{\text{ }}5} \right),{\text{ }}\left( {1,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {2,{\text{ }}1} \right),{\text{ }}\left( {2,{\text{ }}2} \right),{\text{ }}\left( {2,{\text{ }}3} \right),{\text{ }}\left( {2,{\text{ }}4} \right),{\text{ }}\left( {2,{\text{ }}5} \right),{\text{ }}\left( {2,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {3,{\text{ }}1} \right),{\text{ }}\left( {3,{\text{ }}2} \right),{\text{ }}\left( {3,{\text{ }}3} \right),{\text{ }}\left( {3,{\text{ }}4} \right),{\text{ }}\left( {3,{\text{ }}5} \right),{\text{ }}\left( {3,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {4,{\text{ }}1} \right),{\text{ }}\left( {4,{\text{ }}2} \right),{\text{ }}\left( {4,{\text{ }}3} \right),{\text{ }}\left( {4,{\text{ }}4} \right),{\text{ }}\left( {4,{\text{ }}5} \right),{\text{ }}\left( {4,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {5,{\text{ }}1} \right),{\text{ }}\left( {5,{\text{ }}2} \right),{\text{ }}\left( {5,{\text{ }}3} \right),{\text{ }}\left( {5,{\text{ }}4} \right),{\text{ }}\left( {5,{\text{ }}5} \right),{\text{ }}\left( {5,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {6,{\text{ }}1} \right),{\text{ }}\left( {6,{\text{ }}2} \right),{\text{ }}\left( {6,{\text{ }}3} \right),{\text{ }}\left( {6,{\text{ }}4} \right),{\text{ }}\left( {6,{\text{ }}5} \right),{\text{ }}\left( {6,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
Total number of elements (possibilities) of set S are therefore,\[n\left( S \right) = 6 \times 6 = 36\]; i.e. six possibilities of second dice for each of the six possibilities of the first dice.
Note:
1) A sample space is usually denoted using set notation, and the possible ordered outcomes are listed as elements in the set.
2) The probability of an outcome E in a sample space S is a number P between 1 and 0 that measures the likelihood that E will occur on a single trial.
1) If two dice are thrown, there are 6 × 6 = 36 different outcomes possible.
2) The sample space of a random experiment is the set of all possible outcomes.
3) The sample space is represented using S.
4) A subset of the sample space of an experiment is called an event represented by E.
Complete step by step solution:
When two dice are thrown, we may get an outcome as (1, 1), (2, 5), (1, 6), (3, 1) etc.
Since, there are six different possible outcomes for a dice, the set (S) of all the outcomes can be listed as follows:
\[\left( {1,{\text{ }}1} \right),{\text{ }}\left( {1,{\text{ }}2} \right),{\text{ }}\left( {1,{\text{ }}3} \right),{\text{ }}\left( {1,{\text{ }}4} \right),{\text{ }}\left( {1,{\text{ }}5} \right),{\text{ }}\left( {1,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {2,{\text{ }}1} \right),{\text{ }}\left( {2,{\text{ }}2} \right),{\text{ }}\left( {2,{\text{ }}3} \right),{\text{ }}\left( {2,{\text{ }}4} \right),{\text{ }}\left( {2,{\text{ }}5} \right),{\text{ }}\left( {2,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\left( {3,{\text{ }}1} \right),{\text{ }}\left( {3,{\text{ }}2} \right),{\text{ }}\left( {3,{\text{ }}3} \right),{\text{ }}\left( {3,{\text{ }}4} \right),{\text{ }}\left( {3,{\text{ }}5} \right),{\text{ }}\left( {3,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {4,{\text{ }}1} \right),{\text{ }}\left( {4,{\text{ }}2} \right),{\text{ }}\left( {4,{\text{ }}3} \right),{\text{ }}\left( {4,{\text{ }}4} \right),{\text{ }}\left( {4,{\text{ }}5} \right),{\text{ }}\left( {4,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {5,{\text{ }}1} \right),{\text{ }}\left( {5,{\text{ }}2} \right),{\text{ }}\left( {5,{\text{ }}3} \right),{\text{ }}\left( {5,{\text{ }}4} \right),{\text{ }}\left( {5,{\text{ }}5} \right),{\text{ }}\left( {5,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
\[\;\left( {6,{\text{ }}1} \right),{\text{ }}\left( {6,{\text{ }}2} \right),{\text{ }}\left( {6,{\text{ }}3} \right),{\text{ }}\left( {6,{\text{ }}4} \right),{\text{ }}\left( {6,{\text{ }}5} \right),{\text{ }}\left( {6,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.\]
Total number of elements (possibilities) of set S are therefore,\[n\left( S \right) = 6 \times 6 = 36\]; i.e. six possibilities of second dice for each of the six possibilities of the first dice.
Note:
1) A sample space is usually denoted using set notation, and the possible ordered outcomes are listed as elements in the set.
2) The probability of an outcome E in a sample space S is a number P between 1 and 0 that measures the likelihood that E will occur on a single trial.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

