Answer
Verified
398.1k+ views
Hint: Remember that the ratio of the resistances of two conductors will always be directly proportional to the ration of their lengths and it is inversely proportional to the ratio of their cross sectional areas.
Complete step by step answer:
The resistance of a short wire is lesser than the resistance of a long wire because in a long wire the electrons will collide with more ions as they pass through the wire. This makes the relationship between wire length and resistance proportional.
The area of cross section of wire is given by: $A = \pi {r^2}$
The resistance of wire is given by: $R = \dfrac{{\rho l}}{A}$
So, Area of cross section of first wire: ${A_1} = \pi {r_1}^2$
Area of cross section of second wire: ${A_2} = \pi {r_2}^2$
The ratio of areas of two wires will be:
$\dfrac{{{A_1}}}{{{A_2}}} = {\left( {\dfrac{{{r_1}}}{{{r_2}}}} \right)^2} = \dfrac{1}{4}$
Resistance of first wire: ${R_1} = \dfrac{{{\rho _1}{l_1}}}{{{A_1}}}$
Resistance of second wire: ${R_2} = \dfrac{{{\rho _2}{l_2}}}{{{A_2}}}$
The ratio of resistances of two wires will be:
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{3} \times \dfrac{3}{4} \times \dfrac{1}{{\dfrac{1}{4}}}$
$\therefore \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{1}$
Therefore, option D is the correct answer.
Note: The resistance of a thin wire will be greater than the resistance of a thick wire because thin wire has lesser electrons to carry current. This makes the relationship between resistance and the area of the cross section of a wire inversely proportional. The resistance that is offered per unit length and unit cross sectional area of that material when a known quantity of voltage is applied at its end is called specific resistance.
Complete step by step answer:
The resistance of a short wire is lesser than the resistance of a long wire because in a long wire the electrons will collide with more ions as they pass through the wire. This makes the relationship between wire length and resistance proportional.
The area of cross section of wire is given by: $A = \pi {r^2}$
The resistance of wire is given by: $R = \dfrac{{\rho l}}{A}$
So, Area of cross section of first wire: ${A_1} = \pi {r_1}^2$
Area of cross section of second wire: ${A_2} = \pi {r_2}^2$
The ratio of areas of two wires will be:
$\dfrac{{{A_1}}}{{{A_2}}} = {\left( {\dfrac{{{r_1}}}{{{r_2}}}} \right)^2} = \dfrac{1}{4}$
Resistance of first wire: ${R_1} = \dfrac{{{\rho _1}{l_1}}}{{{A_1}}}$
Resistance of second wire: ${R_2} = \dfrac{{{\rho _2}{l_2}}}{{{A_2}}}$
The ratio of resistances of two wires will be:
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{3} \times \dfrac{3}{4} \times \dfrac{1}{{\dfrac{1}{4}}}$
$\therefore \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{1}$
Therefore, option D is the correct answer.
Note: The resistance of a thin wire will be greater than the resistance of a thick wire because thin wire has lesser electrons to carry current. This makes the relationship between resistance and the area of the cross section of a wire inversely proportional. The resistance that is offered per unit length and unit cross sectional area of that material when a known quantity of voltage is applied at its end is called specific resistance.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India