
Two different wires, whose specific resistance are in the ratio $2:3$, length $3:4$ and radius of cross section $1:2$. The ratio of their resistances is
A. $3:4$
B. $16:9$
C. $5:6$
D. $2:1$
Answer
504k+ views
Hint: Remember that the ratio of the resistances of two conductors will always be directly proportional to the ration of their lengths and it is inversely proportional to the ratio of their cross sectional areas.
Complete step by step answer:
The resistance of a short wire is lesser than the resistance of a long wire because in a long wire the electrons will collide with more ions as they pass through the wire. This makes the relationship between wire length and resistance proportional.
The area of cross section of wire is given by: $A = \pi {r^2}$
The resistance of wire is given by: $R = \dfrac{{\rho l}}{A}$
So, Area of cross section of first wire: ${A_1} = \pi {r_1}^2$
Area of cross section of second wire: ${A_2} = \pi {r_2}^2$
The ratio of areas of two wires will be:
$\dfrac{{{A_1}}}{{{A_2}}} = {\left( {\dfrac{{{r_1}}}{{{r_2}}}} \right)^2} = \dfrac{1}{4}$
Resistance of first wire: ${R_1} = \dfrac{{{\rho _1}{l_1}}}{{{A_1}}}$
Resistance of second wire: ${R_2} = \dfrac{{{\rho _2}{l_2}}}{{{A_2}}}$
The ratio of resistances of two wires will be:
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{3} \times \dfrac{3}{4} \times \dfrac{1}{{\dfrac{1}{4}}}$
$\therefore \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{1}$
Therefore, option D is the correct answer.
Note: The resistance of a thin wire will be greater than the resistance of a thick wire because thin wire has lesser electrons to carry current. This makes the relationship between resistance and the area of the cross section of a wire inversely proportional. The resistance that is offered per unit length and unit cross sectional area of that material when a known quantity of voltage is applied at its end is called specific resistance.
Complete step by step answer:
The resistance of a short wire is lesser than the resistance of a long wire because in a long wire the electrons will collide with more ions as they pass through the wire. This makes the relationship between wire length and resistance proportional.
The area of cross section of wire is given by: $A = \pi {r^2}$
The resistance of wire is given by: $R = \dfrac{{\rho l}}{A}$
So, Area of cross section of first wire: ${A_1} = \pi {r_1}^2$
Area of cross section of second wire: ${A_2} = \pi {r_2}^2$
The ratio of areas of two wires will be:
$\dfrac{{{A_1}}}{{{A_2}}} = {\left( {\dfrac{{{r_1}}}{{{r_2}}}} \right)^2} = \dfrac{1}{4}$
Resistance of first wire: ${R_1} = \dfrac{{{\rho _1}{l_1}}}{{{A_1}}}$
Resistance of second wire: ${R_2} = \dfrac{{{\rho _2}{l_2}}}{{{A_2}}}$
The ratio of resistances of two wires will be:
$\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{3} \times \dfrac{3}{4} \times \dfrac{1}{{\dfrac{1}{4}}}$
$\therefore \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{1}$
Therefore, option D is the correct answer.
Note: The resistance of a thin wire will be greater than the resistance of a thick wire because thin wire has lesser electrons to carry current. This makes the relationship between resistance and the area of the cross section of a wire inversely proportional. The resistance that is offered per unit length and unit cross sectional area of that material when a known quantity of voltage is applied at its end is called specific resistance.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

