Two elements P and Q combine to form a compound. If P has 2 and Q has 6 electrons in their outermost shell, what will be the formula of the compound formed?
A. $PQ$
B. ${{P}_{2}}Q$
C. \[{{P}_{2}}{{Q}_{3}}\]
D. $P{{Q}_{2}}$
Answer
Verified
463.2k+ views
Hint: The electrons mentioned in the question are the valence electrons of the elements P and Q. Valence electrons are the electrons that participate in bond formation. Hence, using these values we can find the molecular formula of the compound.
Complete step by step answer:
The number of valence electrons mention in the question are:
$2$ in P element and $6$ in Q element. Now we should remember that all compounds desire to find the octet configuration that is, they want to get 8 electrons. For this reason, they undergo bond formation. Be it, covalent bond or ionic bond or others. Now we can produce this octet configuration in these two elements by adding and removing a few electrons.
If we consider element P, we can remove 2 electrons from the outermost orbital and thus it will receive octet configuration in the $+2$ -oxidation state. This can be denoted in the following manner:
$P\to {{P}^{+2}}+2{{e}^{-}}$
For element Q, we need to add two electrons in order to get the octet configuration. Thus, we can add the two electrons that we have taken from P. the change can be represented in this way.
$Q+2{{e}^{-}}\to {{Q}^{-2}}$
This leads to element Q obtaining the $-2$ oxidation state.
Now putting both these variables together we get,
${{P}^{+2}}+{{Q}^{-2}}\to PQ$
Because the two oxidation states being opposite in sign will cancel each other out.
So, the correct answer is Option A.
Note: Always remember that the sign of the oxidation states present on the ions of the elements has to be considered. If the oxidation state of the ions varies in magnitude, they can be multiplied criss cross in this manner:
${{A}^{+2}}+{{B}^{-3}}\to {{A}_{3}}{{B}_{2}}$
Complete step by step answer:
The number of valence electrons mention in the question are:
$2$ in P element and $6$ in Q element. Now we should remember that all compounds desire to find the octet configuration that is, they want to get 8 electrons. For this reason, they undergo bond formation. Be it, covalent bond or ionic bond or others. Now we can produce this octet configuration in these two elements by adding and removing a few electrons.
If we consider element P, we can remove 2 electrons from the outermost orbital and thus it will receive octet configuration in the $+2$ -oxidation state. This can be denoted in the following manner:
$P\to {{P}^{+2}}+2{{e}^{-}}$
For element Q, we need to add two electrons in order to get the octet configuration. Thus, we can add the two electrons that we have taken from P. the change can be represented in this way.
$Q+2{{e}^{-}}\to {{Q}^{-2}}$
This leads to element Q obtaining the $-2$ oxidation state.
Now putting both these variables together we get,
${{P}^{+2}}+{{Q}^{-2}}\to PQ$
Because the two oxidation states being opposite in sign will cancel each other out.
So, the correct answer is Option A.
Note: Always remember that the sign of the oxidation states present on the ions of the elements has to be considered. If the oxidation state of the ions varies in magnitude, they can be multiplied criss cross in this manner:
${{A}^{+2}}+{{B}^{-3}}\to {{A}_{3}}{{B}_{2}}$
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE