Answer
Verified
499.5k+ views
Hint: Assume the equation of the general tangents to both the parabolas given in the equation. Then simply equate the product of their slopes to , and make the point whose locus needs to be found out, (let’s call it ) satisfy the equations of tangents you assumed.
Let’s assume two parabola
\[{y^2} = 4ax\] ……………… (1)
And
\[{x^2} = 4ay\]. ……………….. (2)
As lines are touching the parabola, therefore lines are tangents on the parabolas.
We are going to write the equation of tangents for both parabolas. As the question says that the lines intersect each other normally at a point. We have to write the equation in slope form.
For \[{y^2} = 4ax\]
Let slope of the tangent \[ = {m_1}\]
Therefore; the slope of tangent = slope of the parabola
\[\therefore \dfrac{{dy}}{{dx}} = {m_1}\] ……………. (A)
\[2y\dfrac{{dy}}{{dx}} = 4a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y}\] ………… (B)
Equating (A) and (B)
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} = {m_1}\]
\[ \Rightarrow y = \dfrac{{2a}}{{{m_1}}}\] Put this value in equation (1)
Form equation (1)
\[{\left( {\dfrac{{2a}}{{{m_1}}}} \right)^2} = 4ax\]
\[ \Rightarrow x = \dfrac{a}{{m_1^2}}\]
Therefore; co-ordinate of point of the tangent is
\[x = \dfrac{a}{{m_1^2}}\] And \[ \Rightarrow y = \dfrac{{2a}}{{{m_1}}}\]
Equation of tangent is
\[\left( {y - \dfrac{{2a}}{{{m_1}}}} \right) = {m_1}\left( {x - \dfrac{a}{{m_1^2}}} \right)\]
\[ \Rightarrow y = mx + \dfrac{a}{{{m_1}}}\] …….. (C) Equation of tangent of parabola\[{y^2} = 4ax\].
Equation of tangent for parabola \[{x^2} = 4ay\]
Just replace \[x \to y\,,\,\,y \to x\,,\,{m_1} \to {m_2}\,and \to b\]in equation (C)
\[ \Rightarrow x = {m_2}y + \dfrac{b}{{{m_2}}}\] …….. (D)
\[ \Rightarrow x{m_2} = m_{_2}^2y + b\]
\[ \Rightarrow y = \dfrac{x}{{{m_2}}} - \dfrac{b}{{m_{_2}^2}}\] ……….. (E)
Compare this equation (E) with the general equation of a straight line\[y = mx + c\].
Slope of tangent \[ = \dfrac{1}{{{m_2}}}\]
As tangents are intersecting perpendicular to each other.
Therefore, the product of slope\[ = - 1\].
\[{m_1} \cdot \dfrac{1}{{{m_2}}} = - 1\]
\[ \Rightarrow {m_2} = - {m_1}\] ……………… (3)
Assume tangents are intersecting with each other at a point\[P(h,k)\].
Therefore, equation (C) and (E) must satisfy the point ‘P’.
Put the value of ‘P’ in equations (C) and (E).
From equation (C)
\[ \Rightarrow y = {m_1}x + \dfrac{a}{{{m_1}}}\]
\[ \Rightarrow k = {m_1}h + \dfrac{a}{{{m_1}}}\]
\[ \Rightarrow m_1^2h - {m_1}k + a = 0\] ……………. (5)
From equation (E)
\[ \Rightarrow y = \dfrac{x}{{{m_2}}} - \dfrac{b}{{m_{_2}^2}}\]
\[ \Rightarrow k = \dfrac{h}{{{m_2}}} - \dfrac{b}{{m_{_2}^2}}\]
\[ \Rightarrow m_{_2}^2k - {m_2}h + b = 0\] …………….(6)
Put the value \[{m_2} = - {m_1}\] in equation (6)
From equation (6) and (3)
\[ \Rightarrow {\left( { - {m_1}} \right)^2}k - \left( { - {m_1}} \right)h + b = 0\]
\[ \Rightarrow m_{_1}^2k + {m_1}h + b = 0\] …………….. (7)
Apply the cross-multiplication method in equation (5) and (7)
\[m_1^2h - {m_1}k + a = 0\] ……………. (5)
\[m_{_1}^2k + {m_1}h + b = 0\] …………….. (7)
\[ \Rightarrow \dfrac{{m_1^2}}{{ - kb - ha}} = \dfrac{{( - ){m_1}}}{{hb - ak}} = \dfrac{1}{{{h^2} - ( - k)k}}\]
From above we can say that
\[ \Rightarrow \dfrac{{m_1^2}}{{ - kb - ha}} = \dfrac{1}{{{h^2} - ( - k)k}}\]
\[ \Rightarrow m_1^2 = \dfrac{{ - kb - ha}}{{{h^2} + {k^2}}}\] …………….. (8)
Again from above
\[ \Rightarrow \dfrac{{( - ){m_1}}}{{hb - ak}} = \dfrac{1}{{{h^2} + {k^2}}}\]
\[ \Rightarrow ( - ){m_1} = \dfrac{{hb - ak}}{{{h^2} + {k^2}}}\]
Squaring both sides
\[ \Rightarrow m_{_1}^2 = \left( {\dfrac{{hb - ak}}{{{h^2} + {k^2}}}} \right)\] ……… (9)
Comparing equation (8) and (9)
From equation (8) and (9)
\[ \Rightarrow m_1^2 = \dfrac{{ - kb - ha}}{{{h^2} + {k^2}}} = {\left( {\dfrac{{hb - ak}}{{{h^2} + {k^2}}}} \right)^2}\]
\[ \Rightarrow - (kb + ha) = \dfrac{{{{\left( {hb - ak} \right)}^2}}}{{{h^2} + {k^2}}}\]
\[ \Rightarrow - (kb + ha)\left( {{h^2} + {k^2}} \right) = {\left( {hb - ak} \right)^2}\]
\[ \Rightarrow {\left( {hb - ak} \right)^2} + (kb + ha)\left( {{h^2} + {k^2}} \right) = 0\] …….(10)
Equation (10) is in terms of\[\left( {h,y} \right)\].
Substitute
\[\begin{gathered}
h \to x \\
k \to y \\
\end{gathered} \]
Locus of point of intersection in term of ‘x’ and ‘y’
\[ \Rightarrow {\left( {bx - ay} \right)^2} + (by + ax)\left( {{x^2} + {y^2}} \right) = 0\]
Note: Cross multiplication
Assume two equation be
\[{A_{1\;}}{x^2}{\text{ }} + {\text{ }}{B_1}{\text{x }} + {\text{ }}{C_{1\;}} = {\text{ }}0\], and
\[{A_2}{x^2}{\text{ }} + {\text{ }}{B_2}{\text{x }} + {\text{ }}{C_{2\;}} = {\text{ }}0\].
The coefficients of \[{x^2}\] are: \[{A_1}\] and\[{A_2}\].
The coefficients of \[x\] are: \[{B_1}\;and{\text{ }}{B_2}\].
The constant terms are: \[{C_1}\;and{\text{ }}\;{C_2}\]
To solve the equations in a simplified way,
\[\dfrac{{{x^2}}}{{{B_1}{C_2} - {B_2}{C_1}}} = \dfrac{x}{{{C_1}{A_2} - {C_2}{A_1}}} = \dfrac{1}{{{A_1}{C_2} - {A_2}{B_1}}}\]
Let’s assume two parabola
\[{y^2} = 4ax\] ……………… (1)
And
\[{x^2} = 4ay\]. ……………….. (2)
As lines are touching the parabola, therefore lines are tangents on the parabolas.
We are going to write the equation of tangents for both parabolas. As the question says that the lines intersect each other normally at a point. We have to write the equation in slope form.
For \[{y^2} = 4ax\]
Let slope of the tangent \[ = {m_1}\]
Therefore; the slope of tangent = slope of the parabola
\[\therefore \dfrac{{dy}}{{dx}} = {m_1}\] ……………. (A)
\[2y\dfrac{{dy}}{{dx}} = 4a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y}\] ………… (B)
Equating (A) and (B)
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} = {m_1}\]
\[ \Rightarrow y = \dfrac{{2a}}{{{m_1}}}\] Put this value in equation (1)
Form equation (1)
\[{\left( {\dfrac{{2a}}{{{m_1}}}} \right)^2} = 4ax\]
\[ \Rightarrow x = \dfrac{a}{{m_1^2}}\]
Therefore; co-ordinate of point of the tangent is
\[x = \dfrac{a}{{m_1^2}}\] And \[ \Rightarrow y = \dfrac{{2a}}{{{m_1}}}\]
Equation of tangent is
\[\left( {y - \dfrac{{2a}}{{{m_1}}}} \right) = {m_1}\left( {x - \dfrac{a}{{m_1^2}}} \right)\]
\[ \Rightarrow y = mx + \dfrac{a}{{{m_1}}}\] …….. (C) Equation of tangent of parabola\[{y^2} = 4ax\].
Equation of tangent for parabola \[{x^2} = 4ay\]
Just replace \[x \to y\,,\,\,y \to x\,,\,{m_1} \to {m_2}\,and \to b\]in equation (C)
\[ \Rightarrow x = {m_2}y + \dfrac{b}{{{m_2}}}\] …….. (D)
\[ \Rightarrow x{m_2} = m_{_2}^2y + b\]
\[ \Rightarrow y = \dfrac{x}{{{m_2}}} - \dfrac{b}{{m_{_2}^2}}\] ……….. (E)
Compare this equation (E) with the general equation of a straight line\[y = mx + c\].
Slope of tangent \[ = \dfrac{1}{{{m_2}}}\]
As tangents are intersecting perpendicular to each other.
Therefore, the product of slope\[ = - 1\].
\[{m_1} \cdot \dfrac{1}{{{m_2}}} = - 1\]
\[ \Rightarrow {m_2} = - {m_1}\] ……………… (3)
Assume tangents are intersecting with each other at a point\[P(h,k)\].
Therefore, equation (C) and (E) must satisfy the point ‘P’.
Put the value of ‘P’ in equations (C) and (E).
From equation (C)
\[ \Rightarrow y = {m_1}x + \dfrac{a}{{{m_1}}}\]
\[ \Rightarrow k = {m_1}h + \dfrac{a}{{{m_1}}}\]
\[ \Rightarrow m_1^2h - {m_1}k + a = 0\] ……………. (5)
From equation (E)
\[ \Rightarrow y = \dfrac{x}{{{m_2}}} - \dfrac{b}{{m_{_2}^2}}\]
\[ \Rightarrow k = \dfrac{h}{{{m_2}}} - \dfrac{b}{{m_{_2}^2}}\]
\[ \Rightarrow m_{_2}^2k - {m_2}h + b = 0\] …………….(6)
Put the value \[{m_2} = - {m_1}\] in equation (6)
From equation (6) and (3)
\[ \Rightarrow {\left( { - {m_1}} \right)^2}k - \left( { - {m_1}} \right)h + b = 0\]
\[ \Rightarrow m_{_1}^2k + {m_1}h + b = 0\] …………….. (7)
Apply the cross-multiplication method in equation (5) and (7)
\[m_1^2h - {m_1}k + a = 0\] ……………. (5)
\[m_{_1}^2k + {m_1}h + b = 0\] …………….. (7)
\[ \Rightarrow \dfrac{{m_1^2}}{{ - kb - ha}} = \dfrac{{( - ){m_1}}}{{hb - ak}} = \dfrac{1}{{{h^2} - ( - k)k}}\]
From above we can say that
\[ \Rightarrow \dfrac{{m_1^2}}{{ - kb - ha}} = \dfrac{1}{{{h^2} - ( - k)k}}\]
\[ \Rightarrow m_1^2 = \dfrac{{ - kb - ha}}{{{h^2} + {k^2}}}\] …………….. (8)
Again from above
\[ \Rightarrow \dfrac{{( - ){m_1}}}{{hb - ak}} = \dfrac{1}{{{h^2} + {k^2}}}\]
\[ \Rightarrow ( - ){m_1} = \dfrac{{hb - ak}}{{{h^2} + {k^2}}}\]
Squaring both sides
\[ \Rightarrow m_{_1}^2 = \left( {\dfrac{{hb - ak}}{{{h^2} + {k^2}}}} \right)\] ……… (9)
Comparing equation (8) and (9)
From equation (8) and (9)
\[ \Rightarrow m_1^2 = \dfrac{{ - kb - ha}}{{{h^2} + {k^2}}} = {\left( {\dfrac{{hb - ak}}{{{h^2} + {k^2}}}} \right)^2}\]
\[ \Rightarrow - (kb + ha) = \dfrac{{{{\left( {hb - ak} \right)}^2}}}{{{h^2} + {k^2}}}\]
\[ \Rightarrow - (kb + ha)\left( {{h^2} + {k^2}} \right) = {\left( {hb - ak} \right)^2}\]
\[ \Rightarrow {\left( {hb - ak} \right)^2} + (kb + ha)\left( {{h^2} + {k^2}} \right) = 0\] …….(10)
Equation (10) is in terms of\[\left( {h,y} \right)\].
Substitute
\[\begin{gathered}
h \to x \\
k \to y \\
\end{gathered} \]
Locus of point of intersection in term of ‘x’ and ‘y’
\[ \Rightarrow {\left( {bx - ay} \right)^2} + (by + ax)\left( {{x^2} + {y^2}} \right) = 0\]
Note: Cross multiplication
Assume two equation be
\[{A_{1\;}}{x^2}{\text{ }} + {\text{ }}{B_1}{\text{x }} + {\text{ }}{C_{1\;}} = {\text{ }}0\], and
\[{A_2}{x^2}{\text{ }} + {\text{ }}{B_2}{\text{x }} + {\text{ }}{C_{2\;}} = {\text{ }}0\].
The coefficients of \[{x^2}\] are: \[{A_1}\] and\[{A_2}\].
The coefficients of \[x\] are: \[{B_1}\;and{\text{ }}{B_2}\].
The constant terms are: \[{C_1}\;and{\text{ }}\;{C_2}\]
To solve the equations in a simplified way,
\[\dfrac{{{x^2}}}{{{B_1}{C_2} - {B_2}{C_1}}} = \dfrac{x}{{{C_1}{A_2} - {C_2}{A_1}}} = \dfrac{1}{{{A_1}{C_2} - {A_2}{B_1}}}\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE