Answer
Verified
448.2k+ views
Hint : In this solution, we will assume that the system has been in a steady-state for a long time. Then both the slabs will have the same rate of heat transfer and we will use this to determine the solution of the interface.
Formula used: In this solution, we will use the following formula:
Rate of heat transfer in a slab with different temperatures: $ Q = \dfrac{{kA\Delta T}}{L} $ where $ A $ is the area of the surface, $ \Delta T $ is the temperature difference, and $ L $ is the length of the slab.
Complete step by step answer
In the system given to us, we will assume that the system has been left in this situation for a long time. This implies that the heat transfer will have occurred over a long time and the system can be said to have achieved a steady-state.
In this steady-state situation, we can say that the heat transfer in both the slabs will be the same. Let us assume that the temperature of the surface is $ \theta $ . Then since the heat flow rate is constant for both the surfaces will be the same and we can write
$ \dfrac{{3kA({\theta _2} - \theta )}}{d} = \dfrac{{kA(\theta - {\theta _1})}}{{3d}} $
Dividing both sides by $ kA/d $ and cross multiplying the denominators, we get
$ 9{\theta _2} - 9\theta = \theta - {\theta _1} $
Solving for $ \theta $ , we get
$\Rightarrow \theta = \dfrac{{9{\theta _2}}}{{10}} + \dfrac{{{\theta _1}}}{{10}} $ which corresponds to option (B).
Note
Unless mentioned otherwise, we must take such systems to be in a steady-state i.e. the system has been in this state for a long time. Only with this assumption can we assume that both the slabs will have the same rate of heat transfer.
Formula used: In this solution, we will use the following formula:
Rate of heat transfer in a slab with different temperatures: $ Q = \dfrac{{kA\Delta T}}{L} $ where $ A $ is the area of the surface, $ \Delta T $ is the temperature difference, and $ L $ is the length of the slab.
Complete step by step answer
In the system given to us, we will assume that the system has been left in this situation for a long time. This implies that the heat transfer will have occurred over a long time and the system can be said to have achieved a steady-state.
In this steady-state situation, we can say that the heat transfer in both the slabs will be the same. Let us assume that the temperature of the surface is $ \theta $ . Then since the heat flow rate is constant for both the surfaces will be the same and we can write
$ \dfrac{{3kA({\theta _2} - \theta )}}{d} = \dfrac{{kA(\theta - {\theta _1})}}{{3d}} $
Dividing both sides by $ kA/d $ and cross multiplying the denominators, we get
$ 9{\theta _2} - 9\theta = \theta - {\theta _1} $
Solving for $ \theta $ , we get
$\Rightarrow \theta = \dfrac{{9{\theta _2}}}{{10}} + \dfrac{{{\theta _1}}}{{10}} $ which corresponds to option (B).
Note
Unless mentioned otherwise, we must take such systems to be in a steady-state i.e. the system has been in this state for a long time. Only with this assumption can we assume that both the slabs will have the same rate of heat transfer.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light