Answer
Verified
398.4k+ views
Hint:We sketch the point of interest, all forces acting on it, and resolve all force vectors into x– and y–components to create a free-body diagram. Every object in the problem requires a separate free-body diagram.
Complete step by step answer:
Let us consider that the acceleration of rope is $a$ which rotates in clockwise direction. Then the acceleration of ${m_1}$ will be $(a + 1.2)$ and the acceleration of ${m_2}$ will be $( - a + 2)$. So, the final diagram is as follows:
Now, let us make a free body diagram for the two masses.
Calculating the net force we will get two equations.
For the first mass:
$T - 40g = 40(a + 1.2) \\
\Rightarrow T - 40(10) = 40(a + 1.2) \\
\Rightarrow T - 400 = 40a + 48 \\
\Rightarrow T = 40a + 448 \\ $
For the second mass:
$T - 60g = 60( - a + 2) \\
\Rightarrow T - 60(10) = 60( - a + 2) \\
\Rightarrow T - 600 = - 60a + 120 \\
\Rightarrow T = - 60a + 720 \\ $
Comapring the above two equations we get,
$40a + 448 = - 60a + 720 \\
\Rightarrow 100a = 272 \\
\Rightarrow a = 2.72m.{\sec ^{ - 2}} \\ $
Now, lets calculate the value of Tension using this value
$T = - 60a + 720 \\
\Rightarrow T = - 60(2.72) + 720 \\
\Rightarrow T = - 163.2 + 720 \\
\Rightarrow T = 556.8N \\ $
Hence, option (B) is correct as Tension in the rope is 556.8N.
Now, we will calculate the individual acceleration of each mass
${a_1} = a + 1.2 \\
\Rightarrow {a_1} = 2.72 + 1.2 \\
\Rightarrow {a_1} = 3.92\,m.{\sec ^{ - 2}} \\ $
Similarly,
${a_2} = - a + 2 \\
\Rightarrow {a_2} = - 2.72 + 2 \\
\Rightarrow {a_2} = - 0.72m.{\sec ^{ - 2}} \\ $
Now we should calculate the time when both the masses will be in the same horizontal height. Hence, we will use the following formula,
$s = ut + \dfrac{1}{2}a{t^2} \\
\Rightarrow 5 = 0(t) + \dfrac{1}{2}(2.72){t^2} \\
\Rightarrow 10 = 2.72{t^2} \\
\Rightarrow {t^2} = 3.67 \\
\therefore t = 1.48\sec $
Therefore, Option (c) is also correct as time after which they will be at the same horizontal level is 1.47 sec.
Hence, we conclude that option B and option C are the correct answer.
Note:Objects are not often subjected to four powers. The number of forces represented by a free-body diagram can be one, two, or three in some situations. The number of forces that must be drawn in a free-body diagram is not a hard and quick guideline. Drawing free-body diagrams has only one rule: represent all of the forces that occur with that entity in the specified case.
Complete step by step answer:
Let us consider that the acceleration of rope is $a$ which rotates in clockwise direction. Then the acceleration of ${m_1}$ will be $(a + 1.2)$ and the acceleration of ${m_2}$ will be $( - a + 2)$. So, the final diagram is as follows:
Now, let us make a free body diagram for the two masses.
Calculating the net force we will get two equations.
For the first mass:
$T - 40g = 40(a + 1.2) \\
\Rightarrow T - 40(10) = 40(a + 1.2) \\
\Rightarrow T - 400 = 40a + 48 \\
\Rightarrow T = 40a + 448 \\ $
For the second mass:
$T - 60g = 60( - a + 2) \\
\Rightarrow T - 60(10) = 60( - a + 2) \\
\Rightarrow T - 600 = - 60a + 120 \\
\Rightarrow T = - 60a + 720 \\ $
Comapring the above two equations we get,
$40a + 448 = - 60a + 720 \\
\Rightarrow 100a = 272 \\
\Rightarrow a = 2.72m.{\sec ^{ - 2}} \\ $
Now, lets calculate the value of Tension using this value
$T = - 60a + 720 \\
\Rightarrow T = - 60(2.72) + 720 \\
\Rightarrow T = - 163.2 + 720 \\
\Rightarrow T = 556.8N \\ $
Hence, option (B) is correct as Tension in the rope is 556.8N.
Now, we will calculate the individual acceleration of each mass
${a_1} = a + 1.2 \\
\Rightarrow {a_1} = 2.72 + 1.2 \\
\Rightarrow {a_1} = 3.92\,m.{\sec ^{ - 2}} \\ $
Similarly,
${a_2} = - a + 2 \\
\Rightarrow {a_2} = - 2.72 + 2 \\
\Rightarrow {a_2} = - 0.72m.{\sec ^{ - 2}} \\ $
Now we should calculate the time when both the masses will be in the same horizontal height. Hence, we will use the following formula,
$s = ut + \dfrac{1}{2}a{t^2} \\
\Rightarrow 5 = 0(t) + \dfrac{1}{2}(2.72){t^2} \\
\Rightarrow 10 = 2.72{t^2} \\
\Rightarrow {t^2} = 3.67 \\
\therefore t = 1.48\sec $
Therefore, Option (c) is also correct as time after which they will be at the same horizontal level is 1.47 sec.
Hence, we conclude that option B and option C are the correct answer.
Note:Objects are not often subjected to four powers. The number of forces represented by a free-body diagram can be one, two, or three in some situations. The number of forces that must be drawn in a free-body diagram is not a hard and quick guideline. Drawing free-body diagrams has only one rule: represent all of the forces that occur with that entity in the specified case.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE