
Two objects A and B are moving along the directions as shown in the figure. Find the magnitude and direction of the relative velocity of B w.r.t. A.

Answer
459.6k+ views
Hint Relative velocity of B w.r.t. A is given by:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} $
Magnitude of this relative velocity is $ \left| \overrightarrow{{{v}_{BA}}} \right| $
Direction of this relative velocity is given by the angle $ \alpha $ which is calculated by:
$\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}} $
Where $ {{v}_{B{{A}_{y}}}} $ and $ {{v}_{B{{A}_{x}}}} $ are the y and x components of $ \overrightarrow{{{v}_{BA}}} $ .
Complete step by step solution
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\
&\Rightarrow \text{Here taking the components of velocity of B;} \\
&\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\
&\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\
\end{align} $
Relative velocity of B w.r.t. A is
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\
&\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\
&\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\
\end{align} $
$ \begin{align}
& Now \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
& \text{For direction;} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Note
Alternate method:
Velocity of B w.r.t. A:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right) $
From the figure;
$ \begin{align}
&\Rightarrow NS=MP=20\sin 30{}^\circ \\
&\Rightarrow NS=10 \\
& and \\
&\Rightarrow ON=OM-NM \\
&\Rightarrow ON=20\cos 30{}^\circ -10 \\
&\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
\end{align} $
$ \begin{align}
& \text{For direction;} \\
&\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} $
Magnitude of this relative velocity is $ \left| \overrightarrow{{{v}_{BA}}} \right| $
Direction of this relative velocity is given by the angle $ \alpha $ which is calculated by:
$\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}} $
Where $ {{v}_{B{{A}_{y}}}} $ and $ {{v}_{B{{A}_{x}}}} $ are the y and x components of $ \overrightarrow{{{v}_{BA}}} $ .
Complete step by step solution
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\
&\Rightarrow \text{Here taking the components of velocity of B;} \\
&\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\
&\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\
\end{align} $
Relative velocity of B w.r.t. A is
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\
&\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\
&\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\
\end{align} $
$ \begin{align}
& Now \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
& \text{For direction;} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Note
Alternate method:
Velocity of B w.r.t. A:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right) $

From the figure;
$ \begin{align}
&\Rightarrow NS=MP=20\sin 30{}^\circ \\
&\Rightarrow NS=10 \\
& and \\
&\Rightarrow ON=OM-NM \\
&\Rightarrow ON=20\cos 30{}^\circ -10 \\
&\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
\end{align} $
$ \begin{align}
& \text{For direction;} \\
&\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

What are the elders in Goa nostalgic about class 11 social science CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Name the chemical used in black and white photogra class 11 chemistry CBSE

Explain Markovnikovs and AntiMarkovnikovs rule using class 11 chemistry CBSE
