Answer
Verified
445.2k+ views
Hint Relative velocity of B w.r.t. A is given by:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} $
Magnitude of this relative velocity is $ \left| \overrightarrow{{{v}_{BA}}} \right| $
Direction of this relative velocity is given by the angle $ \alpha $ which is calculated by:
$\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}} $
Where $ {{v}_{B{{A}_{y}}}} $ and $ {{v}_{B{{A}_{x}}}} $ are the y and x components of $ \overrightarrow{{{v}_{BA}}} $ .
Complete step by step solution
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\
&\Rightarrow \text{Here taking the components of velocity of B;} \\
&\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\
&\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\
\end{align} $
Relative velocity of B w.r.t. A is
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\
&\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\
&\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\
\end{align} $
$ \begin{align}
& Now \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
& \text{For direction;} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Note
Alternate method:
Velocity of B w.r.t. A:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right) $
From the figure;
$ \begin{align}
&\Rightarrow NS=MP=20\sin 30{}^\circ \\
&\Rightarrow NS=10 \\
& and \\
&\Rightarrow ON=OM-NM \\
&\Rightarrow ON=20\cos 30{}^\circ -10 \\
&\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
\end{align} $
$ \begin{align}
& \text{For direction;} \\
&\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} $
Magnitude of this relative velocity is $ \left| \overrightarrow{{{v}_{BA}}} \right| $
Direction of this relative velocity is given by the angle $ \alpha $ which is calculated by:
$\Rightarrow \tan \alpha =\frac{{{v}_{B{{A}_{y}}}}}{{{v}_{B{{A}_{x}}}}} $
Where $ {{v}_{B{{A}_{y}}}} $ and $ {{v}_{B{{A}_{x}}}} $ are the y and x components of $ \overrightarrow{{{v}_{BA}}} $ .
Complete step by step solution
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{A}}}=10\widehat{i} \\
&\Rightarrow \text{Here taking the components of velocity of B;} \\
&\Rightarrow \overrightarrow{{{v}_{B}}}=20\cos 30{}^\circ \widehat{i}+20\sin 30{}^\circ \widehat{j} \\
&\Rightarrow10\sqrt{3}\widehat{i}+10\widehat{j} \\
\end{align} $
Relative velocity of B w.r.t. A is
$ \begin{align}
&\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}-\overrightarrow{{{v}_{A}}} \\
&\Rightarrow =10\sqrt{3}\widehat{i}+10\widehat{j}-10\sqrt{3}\widehat{i} \\
&\Rightarrow =10\left( \sqrt{3}-1 \right)\widehat{i}+10\widehat{j} \\
\end{align} $
$ \begin{align}
& Now \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow10\sqrt{3+1-2\sqrt{3}+1} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
& \text{For direction;} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Note
Alternate method:
Velocity of B w.r.t. A:
$\Rightarrow \overrightarrow{{{v}_{BA}}}=\overrightarrow{{{v}_{B}}}+\left( -\overrightarrow{{{v}_{A}}} \right) $
From the figure;
$ \begin{align}
&\Rightarrow NS=MP=20\sin 30{}^\circ \\
&\Rightarrow NS=10 \\
& and \\
&\Rightarrow ON=OM-NM \\
&\Rightarrow ON=20\cos 30{}^\circ -10 \\
&\Rightarrow ON=10\left( \sqrt{3}-1 \right) \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=\sqrt{O{{N}^{2}}+N{{S}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}+{{1}^{2}}} \\
&\Rightarrow \left| \overrightarrow{{{v}_{BA}}} \right|=10\sqrt{5-2\sqrt{3}}m{{s}^{-1}} \\
\end{align} $
$ \begin{align}
& \text{For direction;} \\
&\Rightarrow \text{tan }\alpha =\frac{NS}{ON} \\
&\Rightarrow \tan \alpha =\frac{10}{10\left( \sqrt{3}-1 \right)} \\
&\Rightarrow \tan \alpha =\frac{1}{\sqrt{3}-1} \\
&\Rightarrow \alpha ={{\tan }^{-1}}\left( \frac{1}{\sqrt{3}-1} \right) \\
\end{align} $ .
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE