Answer
Verified
468k+ views
Hint: The law of conservation of momentum is used here. The momentum should be conserved before and after the collision. After the collision, the masses will stick together. Therefore combined mass of the system should be considered. These all may help you to solve the question.
Complete answer:
First of all let us look at what all are given in the question,
The mass of the two objects are equal, therefore we can write that,
${{m}_{1}}={{m}_{2}}=1.5kg$
And also the velocity before the collision for each of the object is,
${{u}_{1}}={{u}_{2}}=2.5m{{s}^{-1}}$
As per the question, the masses will stick together after the collision takes place, therefore when we calculate the momentum after the collision, the combined mass of the whole system should be taken.
Therefore the combined mass of the objects will be,
$M={{m}_{1}}+{{m}_{2}}=2\times 1.5=3kg$
Let us assume that the velocity of the mass after the collision as $v$,
According to the conservation of linear momentum, we can write that the momentum before the collision will be equivalent to the momentum after the collision.
Therefore we can write that,
${{m}_{1}}{{u}_{1}}-{{m}_{2}}{{u}_{2}}=Mv$
Substituting the values in the equation will give,
$1.5\times 2.5-1.5\times 2.5=3v$
Simplifying the equation will give,
$\begin{align}
& 3v=0 \\
& \therefore v=0m{{s}^{-1}} \\
\end{align}$
Note:
Isaac Newton is the founder of the law of conservation of momentum. He discovered this when he made the laws of motion. In an isolated system like the universe, if there are no external forces acting, then the momentum is conserved every time. It is because when momentum is conserved, the components in any of the directions will also be conserved.
Complete answer:
First of all let us look at what all are given in the question,
The mass of the two objects are equal, therefore we can write that,
${{m}_{1}}={{m}_{2}}=1.5kg$
And also the velocity before the collision for each of the object is,
${{u}_{1}}={{u}_{2}}=2.5m{{s}^{-1}}$
As per the question, the masses will stick together after the collision takes place, therefore when we calculate the momentum after the collision, the combined mass of the whole system should be taken.
Therefore the combined mass of the objects will be,
$M={{m}_{1}}+{{m}_{2}}=2\times 1.5=3kg$
Let us assume that the velocity of the mass after the collision as $v$,
According to the conservation of linear momentum, we can write that the momentum before the collision will be equivalent to the momentum after the collision.
Therefore we can write that,
${{m}_{1}}{{u}_{1}}-{{m}_{2}}{{u}_{2}}=Mv$
Substituting the values in the equation will give,
$1.5\times 2.5-1.5\times 2.5=3v$
Simplifying the equation will give,
$\begin{align}
& 3v=0 \\
& \therefore v=0m{{s}^{-1}} \\
\end{align}$
Note:
Isaac Newton is the founder of the law of conservation of momentum. He discovered this when he made the laws of motion. In an isolated system like the universe, if there are no external forces acting, then the momentum is conserved every time. It is because when momentum is conserved, the components in any of the directions will also be conserved.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE