
Two objects of masses and possess velocities and m/s respectively. The velocity of their centre of mass in m/s is
a.
b.
c.
d.
Answer
474.9k+ views
Hint: To describe its motion, we consider a point in the body where the entire mass of the body is supposed to concentrate to describe its motion is called center of mass. Motion of the body is represented by the path of the particle at the center of mass point. Using the above data apply the velocity of mass formula.
Complete step by step answer:
The total momentum of the body is conserved when the initial momentum is equal to the final momentum of a system.
To describe its motion, we consider a point in the body where the entire mass of the body is supposed to concentrate to describe its motion is called center of mass.
Motion of the body is represented by the path of the particle at the center of mass point.
The center of mass is located at the centroid when the rigid body is with uniform density. The center of mass for a disc which is uniform would be at a center.
In some cases, the center of mass may not fall on the object. For a ring the center of mass is located at its center.
Let us consider two blocks A and B
and
Initial momentum is given by
Then the final momentum
Then from conservation of momentum,
Hence velocity of center of mass,
Hence, the correct answer is option (C).
Note: By vector addition, we can determine the center of mass of an object. If the particle moves in uniform velocity then the magnitude of the center of mass is obtained by parallelogram law of vectors. The center of mass is located at the centroid when the rigid body is with uniform density. The center of mass for a disc which is uniform would be at a center.
Complete step by step answer:
The total momentum of the body is conserved when the initial momentum is equal to the final momentum of a system.
To describe its motion, we consider a point in the body where the entire mass of the body is supposed to concentrate to describe its motion is called center of mass.
Motion of the body is represented by the path of the particle at the center of mass point.
The center of mass is located at the centroid when the rigid body is with uniform density. The center of mass for a disc which is uniform would be at a center.
In some cases, the center of mass may not fall on the object. For a ring the center of mass is located at its center.
Let us consider two blocks A and B
Initial momentum is given by
Then the final momentum
Then from conservation of momentum,
Hence velocity of center of mass,
Hence, the correct answer is option (C).
Note: By vector addition, we can determine the center of mass of an object. If the particle moves in uniform velocity then the magnitude of the center of mass is obtained by parallelogram law of vectors. The center of mass is located at the centroid when the rigid body is with uniform density. The center of mass for a disc which is uniform would be at a center.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
