Answer
Verified
459.3k+ views
Hint: In this question, we are given two poles and the distance between their feet, and we have to find the distance between their tops. For this question, we will first draw a diagram to understand the question better. After that, we will use Pythagoras’ Theorem in the right angles triangle to get the required answer. Pythagoras’ Theorem is given as that the sum of squares of the base and the perpendicular is equal to the square of the hypotenuse, that is, ${{h}^{2}}={{p}^{2}}+{{b}^{2}}$, where $h$ is the hypotenuse, $b$ is the base and $p$ is the perpendicular.
Complete step-by-step solution
Let us first draw a diagram for better understanding.
We are given two poles standing upright. So let us take $AD=18m$ and $BC=13m$. Distance between their feet is $12m$, therefore, $DC=12m$. We have to find the distance between their tops, therefore we have to find$AB$.
Since poles are standing upright, therefore $\angle ADC=90{}^\circ $. Let us now draw $BE$ which is parallel to $DC$ and equal to $DC$.
Therefore, $BE=12m$ and $\angle AEB=90{}^\circ $. Hence, we have obtained a right angled triangle $AEB$ with $\angle E=90{}^\circ $ and $BE=12m$.
As we can see from the diagram, $AD=AE+ED$. Since $ED$ is parallel to $BC$ and equal to BC, therefore –
$\begin{align}
& AD=AE+BC \\
& 18=AE+13 \\
& AE=5m \\
\end{align}$
Hence, we now know the value of $AE=5m$.
Now, in right angles triangle $\Delta ABE$,
$AE=5m,BE=12m$ and we have to find the value of $AB$. Using Pythagoras’ theorem, ${{h}^{2}}={{p}^{2}}+{{b}^{2}}$, where $h$ is the hypotenuse, $b$ is the base and $p$ is the perpendicular, we get –
$\begin{align}
& {{\left( AB \right)}^{2}}={{\left( AE \right)}^{2}}+{{\left( BE \right)}^{2}} \\
& \Rightarrow {{\left( AB \right)}^{2}}={{\left( 5 \right)}^{2}}+{{\left( 12 \right)}^{2}} \\
& \Rightarrow {{\left( AB \right)}^{2}}=25+144 \\
& \Rightarrow {{\left( AB \right)}^{2}}=169 \\
\end{align}$
Taking square root both sides, we get –
$\begin{align}
& \Rightarrow \left( AB \right)=\sqrt{169} \\
& \Rightarrow \left( AB \right)=13m \\
\end{align}$
Hence, the distance between their tops is $13m$.
Note: In these types of questions, students should draw diagrams first for a better understanding of the question. Students should not get confused with finding distance between them as their tops are not at the same height, so the distance between their tops can be different between their feet. Pythagoras’ theorem should only be applied in a right-angled triangle.
Complete step-by-step solution
Let us first draw a diagram for better understanding.
We are given two poles standing upright. So let us take $AD=18m$ and $BC=13m$. Distance between their feet is $12m$, therefore, $DC=12m$. We have to find the distance between their tops, therefore we have to find$AB$.
Since poles are standing upright, therefore $\angle ADC=90{}^\circ $. Let us now draw $BE$ which is parallel to $DC$ and equal to $DC$.
Therefore, $BE=12m$ and $\angle AEB=90{}^\circ $. Hence, we have obtained a right angled triangle $AEB$ with $\angle E=90{}^\circ $ and $BE=12m$.
As we can see from the diagram, $AD=AE+ED$. Since $ED$ is parallel to $BC$ and equal to BC, therefore –
$\begin{align}
& AD=AE+BC \\
& 18=AE+13 \\
& AE=5m \\
\end{align}$
Hence, we now know the value of $AE=5m$.
Now, in right angles triangle $\Delta ABE$,
$AE=5m,BE=12m$ and we have to find the value of $AB$. Using Pythagoras’ theorem, ${{h}^{2}}={{p}^{2}}+{{b}^{2}}$, where $h$ is the hypotenuse, $b$ is the base and $p$ is the perpendicular, we get –
$\begin{align}
& {{\left( AB \right)}^{2}}={{\left( AE \right)}^{2}}+{{\left( BE \right)}^{2}} \\
& \Rightarrow {{\left( AB \right)}^{2}}={{\left( 5 \right)}^{2}}+{{\left( 12 \right)}^{2}} \\
& \Rightarrow {{\left( AB \right)}^{2}}=25+144 \\
& \Rightarrow {{\left( AB \right)}^{2}}=169 \\
\end{align}$
Taking square root both sides, we get –
$\begin{align}
& \Rightarrow \left( AB \right)=\sqrt{169} \\
& \Rightarrow \left( AB \right)=13m \\
\end{align}$
Hence, the distance between their tops is $13m$.
Note: In these types of questions, students should draw diagrams first for a better understanding of the question. Students should not get confused with finding distance between them as their tops are not at the same height, so the distance between their tops can be different between their feet. Pythagoras’ theorem should only be applied in a right-angled triangle.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE