Answer
Verified
495.6k+ views
Hint: Draw the figure to observe the data given in the question. Use Pythagoras Theorem of right angled triangles to relate the base and perpendicular of the poles. Consider the fact that the pole is perpendicular to the base.
Complete step-by-step answer:
We have two poles of height 6m and 11m which stand on a plane ground such that the distance between their feet is 12m. We have to find the distance between their tops.
Let us assume that the ends of pole of height 6m are A and B and of pole of height 11m are C and D, as shown in the figure.
We have to find the length of BD.
We observe that \[AB\bot AC\] and \[CD\bot AC\]. Thus, BE is parallel to AC.
Thus, we observe that ABCD is a rectangle whose opposite sides are equal.
We will find the length of DE.
As ABCD is a rectangle, we have \[AB=CE=6m\].
So, we have \[CD=CE+DE\].
We know that \[CD=11m,CE=6m\].
Thus, we have \[11=6+DE\Rightarrow DE=11-6=5m\].
As ABCD is a rectangle, we have \[AC=BE=12m\].
Now, we will consider the triangle \[\vartriangle BDE\]. We know that \[BE\bot DE\]. Thus, \[\vartriangle BDE\] is a right angled triangle right angled at E.
We will now use Pythagoras Theorem in this triangle. Thus, we have \[{{\left( BE \right)}^{2}}+{{\left( ED \right)}^{2}}={{\left( BD \right)}^{2}}\].
We know that \[BE=12m,DE=5m\].
Thus, we have \[{{\left( BD \right)}^{2}}={{\left( 12 \right)}^{2}}+{{5}^{2}}=144+25=169={{\left( 13 \right)}^{2}}\].
So, we have \[BD=13m\].
Hence, the distance between the top of the poles is \[BD=13m\].
Note: It’s necessary to observe that ABCD is a rectangle and thus, BDE is a right angled triangle. We can’t solve this question without proving that BDE is a right angles triangle. Also, one must know the Pythagoras Theorem of right angled triangles. One should also be careful about the units of length while performing calculations.
Complete step-by-step answer:
We have two poles of height 6m and 11m which stand on a plane ground such that the distance between their feet is 12m. We have to find the distance between their tops.
Let us assume that the ends of pole of height 6m are A and B and of pole of height 11m are C and D, as shown in the figure.
We have to find the length of BD.
We observe that \[AB\bot AC\] and \[CD\bot AC\]. Thus, BE is parallel to AC.
Thus, we observe that ABCD is a rectangle whose opposite sides are equal.
We will find the length of DE.
As ABCD is a rectangle, we have \[AB=CE=6m\].
So, we have \[CD=CE+DE\].
We know that \[CD=11m,CE=6m\].
Thus, we have \[11=6+DE\Rightarrow DE=11-6=5m\].
As ABCD is a rectangle, we have \[AC=BE=12m\].
Now, we will consider the triangle \[\vartriangle BDE\]. We know that \[BE\bot DE\]. Thus, \[\vartriangle BDE\] is a right angled triangle right angled at E.
We will now use Pythagoras Theorem in this triangle. Thus, we have \[{{\left( BE \right)}^{2}}+{{\left( ED \right)}^{2}}={{\left( BD \right)}^{2}}\].
We know that \[BE=12m,DE=5m\].
Thus, we have \[{{\left( BD \right)}^{2}}={{\left( 12 \right)}^{2}}+{{5}^{2}}=144+25=169={{\left( 13 \right)}^{2}}\].
So, we have \[BD=13m\].
Hence, the distance between the top of the poles is \[BD=13m\].
Note: It’s necessary to observe that ABCD is a rectangle and thus, BDE is a right angled triangle. We can’t solve this question without proving that BDE is a right angles triangle. Also, one must know the Pythagoras Theorem of right angled triangles. One should also be careful about the units of length while performing calculations.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE