Answer
Verified
430.5k+ views
Hint: The time period of a simple pendulum T, depends on the length of the pendulum l and the acceleration due to gravity g. Time period T is directly proportional to the square root of the length of the pendulum l. By equating the two time periods we get the value of n.
Complete answer:
According to the question, we have two simple pendulums A and B of length ${{l}_{1}}=5$m and ${{l}_{2}}=20$m respectively, which are given small linear displacement in one direction at the same time, as shown in the diagram below.
Now, let us calculate the time period of pendulum A,
${{T}_{1}}=2\pi \sqrt{\dfrac{{{l}_{1}}}{g}}=2\pi \sqrt{\dfrac{5}{10}}=\sqrt{2}\pi $ ….(i) [ taking acceleration due to gravity $g=10$m/${{s}^{2}}$]
Then, time period of pendulum B is given by,
${{T}_{2}}=2\pi \sqrt{\dfrac{{{l}_{2}}}{g}}=2\pi \sqrt{\dfrac{20}{10}}=2\sqrt{2}\pi $ ….(ii) [ taking acceleration due to gravity $g=10$m/${{s}^{2}}$]
Now, to calculate the number of oscillations n of the pendulum A after which the two pendulums A and B will be in the phase, we compare the time period of pendulum A and time period of pendulum B calculated in equations (i) and (ii), we get,
${{T}_{2}}=2{{T}_{1}}$ ….(iii)
Therefore, we see from the above equation that the time period of pendulum A is twice the time period of pendulum B, i.e. after 2 oscillations of pendulum A, the two pendulums A and B will be in the phase.
Thus, the correct answer is option (C).
Note:
The formula of the time period of a simple pendulum should be remembered to solve such questions. The standard value of acceleration due to gravity g is $9.8$ m/${{s}^{2}}$, however we can take $g=10$m/${{s}^{2}}$to make the calculations simple and less time taking.
Complete answer:
According to the question, we have two simple pendulums A and B of length ${{l}_{1}}=5$m and ${{l}_{2}}=20$m respectively, which are given small linear displacement in one direction at the same time, as shown in the diagram below.
Now, let us calculate the time period of pendulum A,
${{T}_{1}}=2\pi \sqrt{\dfrac{{{l}_{1}}}{g}}=2\pi \sqrt{\dfrac{5}{10}}=\sqrt{2}\pi $ ….(i) [ taking acceleration due to gravity $g=10$m/${{s}^{2}}$]
Then, time period of pendulum B is given by,
${{T}_{2}}=2\pi \sqrt{\dfrac{{{l}_{2}}}{g}}=2\pi \sqrt{\dfrac{20}{10}}=2\sqrt{2}\pi $ ….(ii) [ taking acceleration due to gravity $g=10$m/${{s}^{2}}$]
Now, to calculate the number of oscillations n of the pendulum A after which the two pendulums A and B will be in the phase, we compare the time period of pendulum A and time period of pendulum B calculated in equations (i) and (ii), we get,
${{T}_{2}}=2{{T}_{1}}$ ….(iii)
Therefore, we see from the above equation that the time period of pendulum A is twice the time period of pendulum B, i.e. after 2 oscillations of pendulum A, the two pendulums A and B will be in the phase.
Thus, the correct answer is option (C).
Note:
The formula of the time period of a simple pendulum should be remembered to solve such questions. The standard value of acceleration due to gravity g is $9.8$ m/${{s}^{2}}$, however we can take $g=10$m/${{s}^{2}}$to make the calculations simple and less time taking.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE