Answer
Verified
428.4k+ views
Hint: Based on Hooke’s law the total force exerted on the block will be equal to the extension of both strings, and the effective spring constant. The springs are in series, the effective force constant is the inverse of the sum of the inverse of the individual spring constant or the inverse of the effective force constant is equal to the sum of the inverse of each of the spring constants.
Formula used In this solution we will be using the following formulae;
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Complete Step-by-Step solution:
To solve this question, we note that the two springs are in series. And that the force exerted by such a spring could be considered as the product of an effective spring constant and the total extension in the springs. Generally, the force exerted by a spring is
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
Then, for the combination of springs in series, we have
$ F = {k_{eqs}}e $ where $ {k_{eqs}} $ is the effective force constant of the network. This in itself, is given by
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Actually adding them, we have
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{{{k_1} + {k_2}}}{{{k_1}{k_2}}} $
$ \Rightarrow {k_{eqs}} = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}} $
Hence, the force exerted would be
$ F = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\left( {{x_1} + {x_2}} \right) $
The correct option is A.
Note:
For clarity, the $ {x_1} + {x_2} $ is the extension of the springs in total. As seen in the diagram, the upper spring is extended by $ {x_1} $ , and the extension of the upper one is $ {x_2} $ , hence, the total extension would be the addition of them both.
Formula used In this solution we will be using the following formulae;
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Complete Step-by-Step solution:
To solve this question, we note that the two springs are in series. And that the force exerted by such a spring could be considered as the product of an effective spring constant and the total extension in the springs. Generally, the force exerted by a spring is
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
Then, for the combination of springs in series, we have
$ F = {k_{eqs}}e $ where $ {k_{eqs}} $ is the effective force constant of the network. This in itself, is given by
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Actually adding them, we have
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{{{k_1} + {k_2}}}{{{k_1}{k_2}}} $
$ \Rightarrow {k_{eqs}} = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}} $
Hence, the force exerted would be
$ F = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\left( {{x_1} + {x_2}} \right) $
The correct option is A.
Note:
For clarity, the $ {x_1} + {x_2} $ is the extension of the springs in total. As seen in the diagram, the upper spring is extended by $ {x_1} $ , and the extension of the upper one is $ {x_2} $ , hence, the total extension would be the addition of them both.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE