![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Two springs are in series combination and are attached to a block of mass $ m $ which is in equilibrium. The spring constants and the extensions in the springs are shown in the figure then the force exerted by the spring on the block is
(A) $ \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\left( {{x_1} + {x_2}} \right) $
(B) $ {k_1}{x_1} + {k_2}{x_2} $
(C) $ {k_1}{x_1} $
(D) None of these
![seo images](https://www.vedantu.com/question-sets/c692bdc3-c771-40f0-8b53-2f962572c9393456742644452448575.png)
Answer
451.2k+ views
Hint: Based on Hooke’s law the total force exerted on the block will be equal to the extension of both strings, and the effective spring constant. The springs are in series, the effective force constant is the inverse of the sum of the inverse of the individual spring constant or the inverse of the effective force constant is equal to the sum of the inverse of each of the spring constants.
Formula used In this solution we will be using the following formulae;
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Complete Step-by-Step solution:
To solve this question, we note that the two springs are in series. And that the force exerted by such a spring could be considered as the product of an effective spring constant and the total extension in the springs. Generally, the force exerted by a spring is
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
Then, for the combination of springs in series, we have
$ F = {k_{eqs}}e $ where $ {k_{eqs}} $ is the effective force constant of the network. This in itself, is given by
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Actually adding them, we have
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{{{k_1} + {k_2}}}{{{k_1}{k_2}}} $
$ \Rightarrow {k_{eqs}} = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}} $
Hence, the force exerted would be
$ F = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\left( {{x_1} + {x_2}} \right) $
The correct option is A.
Note:
For clarity, the $ {x_1} + {x_2} $ is the extension of the springs in total. As seen in the diagram, the upper spring is extended by $ {x_1} $ , and the extension of the upper one is $ {x_2} $ , hence, the total extension would be the addition of them both.
Formula used In this solution we will be using the following formulae;
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Complete Step-by-Step solution:
To solve this question, we note that the two springs are in series. And that the force exerted by such a spring could be considered as the product of an effective spring constant and the total extension in the springs. Generally, the force exerted by a spring is
$ F = ke $ where $ F $ is the force exerted by a spring, $ k $ is the force constant, and $ e $ is the extension of spring.
Then, for the combination of springs in series, we have
$ F = {k_{eqs}}e $ where $ {k_{eqs}} $ is the effective force constant of the network. This in itself, is given by
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} $ where $ {k_{eqs}} $ is the equivalent spring constant of two springs in series, $ {k_1} $ is the spring constant of one, and $ {k_2} $ is the spring constant of the other.
Actually adding them, we have
$ \dfrac{1}{{{k_{eqs}}}} = \dfrac{{{k_1} + {k_2}}}{{{k_1}{k_2}}} $
$ \Rightarrow {k_{eqs}} = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}} $
Hence, the force exerted would be
$ F = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\left( {{x_1} + {x_2}} \right) $
The correct option is A.
Note:
For clarity, the $ {x_1} + {x_2} $ is the extension of the springs in total. As seen in the diagram, the upper spring is extended by $ {x_1} $ , and the extension of the upper one is $ {x_2} $ , hence, the total extension would be the addition of them both.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The combining capacity of an element is known as i class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the image of the point 38 about the line x+3y class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Can anyone list 10 advantages and disadvantages of friction
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Distinguish between Mitosis and Meiosis class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)