Answer
Verified
429.9k+ views
Hint:We have to know the formula of efficiency of any steam engine. The formula of efficiency of a steam engine is \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] . Here \[\eta \] is the efficiency of a steam engine. . In this question we might be confused by the fourth option but we have to remember that efficiency is not dependent on fuels.
Complete step by step answer:
We know that \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] ,
Here \[\eta \] is the efficiency of a steam engine, and \[{T_2}\& {T_1}\] is equal to the sink temperature and the source temperatures respectively.
Now, \[{\eta _A} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] , here \[{\eta _A}\]is equal to the efficiency of the steam engine A.
\[{T_1}\] \[ = \] \[700k\], \[{T_2}\]\[ = \] \[350k\]
Therefore,
\[{\eta _A} = 1 - \dfrac{{{T_2}}}{{{T_1}}} \\
\Rightarrow{\eta _A} = 1 - \dfrac{{350}}{{700}} \\
\Rightarrow{\eta _A} = 1 - 0.5 \\
\Rightarrow{\eta _A} = 0.5\]
Again for the engine B, \[{\eta _B} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
\[{T_1}\] \[ = \]\[650k\], \[{T_2}\]\[ = \] \[300k\] ,
Therefore,
\[{\eta _B} = 1 - \dfrac{{{T_2}}}{{{T_1}}} \\
\Rightarrow {\eta _B} = 1 - \dfrac{{300}}{{650}}\\
\Rightarrow {\eta _B} = 1 - 0.46\\
\Rightarrow {\eta _B} = 0.53\]
From this calculation we can say the efficiency of B is greater than the efficiency of A.Therefore, if two steam engines A and B, have their sources respectively at \[700k\] and \[650k\] . And their sinks at \[350k\] and \[300k\] .Then the efficiency of the steam engine B will be greater than the efficiency of the steam engine A.
Hence, option B is correct.
Note:We have to keep in our mind that efficiencies cannot be affected by the fuel present in the engine. We can get confused by the last option given in the question. And the second important thing is we have to be careful that the formula is \[{\eta _{}} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] not \[{\eta _{}} = 1 - \dfrac{{{T_1}}}{{{T_2}}}\]. Many people make these small mistakes. And also we have to remember which one is the source temperature and which one is the sink. . And also we have to remember which one is the source temperature and which one is the sink. All temperatures should be calculated in kelvin units.And the efficiency has no unit because it is the ratio of the two temperatures.
Complete step by step answer:
We know that \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] ,
Here \[\eta \] is the efficiency of a steam engine, and \[{T_2}\& {T_1}\] is equal to the sink temperature and the source temperatures respectively.
Now, \[{\eta _A} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] , here \[{\eta _A}\]is equal to the efficiency of the steam engine A.
\[{T_1}\] \[ = \] \[700k\], \[{T_2}\]\[ = \] \[350k\]
Therefore,
\[{\eta _A} = 1 - \dfrac{{{T_2}}}{{{T_1}}} \\
\Rightarrow{\eta _A} = 1 - \dfrac{{350}}{{700}} \\
\Rightarrow{\eta _A} = 1 - 0.5 \\
\Rightarrow{\eta _A} = 0.5\]
Again for the engine B, \[{\eta _B} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
\[{T_1}\] \[ = \]\[650k\], \[{T_2}\]\[ = \] \[300k\] ,
Therefore,
\[{\eta _B} = 1 - \dfrac{{{T_2}}}{{{T_1}}} \\
\Rightarrow {\eta _B} = 1 - \dfrac{{300}}{{650}}\\
\Rightarrow {\eta _B} = 1 - 0.46\\
\Rightarrow {\eta _B} = 0.53\]
From this calculation we can say the efficiency of B is greater than the efficiency of A.Therefore, if two steam engines A and B, have their sources respectively at \[700k\] and \[650k\] . And their sinks at \[350k\] and \[300k\] .Then the efficiency of the steam engine B will be greater than the efficiency of the steam engine A.
Hence, option B is correct.
Note:We have to keep in our mind that efficiencies cannot be affected by the fuel present in the engine. We can get confused by the last option given in the question. And the second important thing is we have to be careful that the formula is \[{\eta _{}} = 1 - \dfrac{{{T_2}}}{{{T_1}}}\] not \[{\eta _{}} = 1 - \dfrac{{{T_1}}}{{{T_2}}}\]. Many people make these small mistakes. And also we have to remember which one is the source temperature and which one is the sink. . And also we have to remember which one is the source temperature and which one is the sink. All temperatures should be calculated in kelvin units.And the efficiency has no unit because it is the ratio of the two temperatures.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE