Answer
Verified
470.7k+ views
Hint: Here we will solve this question by assuming the marks of two students and one has more 9 marks than the others. Then we will get the equation with one variable and after that we will combine the marks of both of the students and will consider it as 100%.
Complete step-by-step answer:
Step-1
Let us consider the marks of the both of the students as x and y respectively.
According to question one has 9 marks more than the others.
Let’s x= y+9………………(1)
Step-2
Also according to the question x is 56% of the sum of the x and y
i.e. $x = \dfrac{{56}}{{100}}(x + y)$
Step-3
Multiplying 100 on both side we get,
100x=56x+56y
Step-4
Taking 56x to the left hand side we get,
100x-56x=56y
Or, 44x=56y
Or, \[x = \dfrac{{56}}{{44}}y\]
Step-5
Cancelling numerator and denominator by 4,
Or, $x = \dfrac{{14}}{{11}}y$…………………..(2)
Step-6
Equating equation (1) and (2) we get,
$y + 9 = \dfrac{{14}}{{11}}y$
Step-7
Multiplying 11 on both of the side we get,
11(y+9) = 14y
Step-8
Upon simplifying the equation we get,
11y + 99 =14y
Step-9
Step-10
Putting terms containing y on the same side we get,
14y – 11y = 99
Or, 3y = 99
Or, y = 99/3
Or, y = 33
Step-11
Putting the value of y in equation (1) we get,
x = y + 9
Or, x = 33 + 9
Or, x = 42
Step-12
Hence, two of the students secured 42 and 33 marks in the examination respectively.
Note: We can check our answer with the below process
Checking error-
x = y + 9
42= 33+9 (checked)
$x = \dfrac{{56}}{{100}}(x + y)$
$\dfrac{{56}}{{100}}(33 + 42)$
= 4200/100
= 42 (checked)
Complete step-by-step answer:
Step-1
Let us consider the marks of the both of the students as x and y respectively.
According to question one has 9 marks more than the others.
Let’s x= y+9………………(1)
Step-2
Also according to the question x is 56% of the sum of the x and y
i.e. $x = \dfrac{{56}}{{100}}(x + y)$
Step-3
Multiplying 100 on both side we get,
100x=56x+56y
Step-4
Taking 56x to the left hand side we get,
100x-56x=56y
Or, 44x=56y
Or, \[x = \dfrac{{56}}{{44}}y\]
Step-5
Cancelling numerator and denominator by 4,
Or, $x = \dfrac{{14}}{{11}}y$…………………..(2)
Step-6
Equating equation (1) and (2) we get,
$y + 9 = \dfrac{{14}}{{11}}y$
Step-7
Multiplying 11 on both of the side we get,
11(y+9) = 14y
Step-8
Upon simplifying the equation we get,
11y + 99 =14y
Step-9
Step-10
Putting terms containing y on the same side we get,
14y – 11y = 99
Or, 3y = 99
Or, y = 99/3
Or, y = 33
Step-11
Putting the value of y in equation (1) we get,
x = y + 9
Or, x = 33 + 9
Or, x = 42
Step-12
Hence, two of the students secured 42 and 33 marks in the examination respectively.
Note: We can check our answer with the below process
Checking error-
x = y + 9
42= 33+9 (checked)
$x = \dfrac{{56}}{{100}}(x + y)$
$\dfrac{{56}}{{100}}(33 + 42)$
= 4200/100
= 42 (checked)
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE