Answer
Verified
498.6k+ views
Hint: To find the locus of point of intersection of two tangents to the parabola, we will write the equation of tangents in slope form and then use the angle formula to compare the slopes between two tangents.
Complete step-by-step answer:
We have a parabola of the form \[{{y}^{2}}=4ax\]. We have two tangents to the parabola which make angles \[{{\alpha }_{1}}\] and \[{{\alpha }_{2}}\] with the \[x\]-axis such that \[\dfrac{\cot {{\alpha }_{1}}}{\cot {{\alpha }_{2}}}=2\] at their point of intersection.
We know that the equation of tangent of parabola of the form \[{{y}^{2}}=4ax\] with slope \[m\] is \[y=mx+\dfrac{a}{m}\].
If a line makes an angle \[\alpha \] with \[x\]-axis, the slope of the line is \[\tan \alpha \].
So, the two tangents making angles \[{{\alpha }_{1}}\] and \[{{\alpha }_{2}}\] with \[x\]-axis have slopes \[\tan {{\alpha }_{1}}\] and \[\tan {{\alpha }_{2}}\].
The equation of tangent with slope \[\tan {{\alpha }_{1}}\] is \[y=\tan {{\alpha }_{1}}x+ \dfrac{a}{\tan {{\alpha }_{1}}}\].
Rewriting the above equation by dividing by \[\tan {{\alpha }_{1}}\], we get \[\dfrac{1}{\tan {{\alpha }_{1}}}\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=x\]. \[\left( 1 \right)\]
The equation of tangent with slope \[\tan {{\alpha }_{2}}\] is \[y=\tan {{\alpha }_{2}}x+ \dfrac{a}{\tan {{\alpha }_{2}}}\].
Rewriting the above equation by dividing by \[\tan {{\alpha }_{2}}\], we get \[\dfrac{1}{\tan {{\alpha }_{2}}}\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)=x\]. \[\left( 2 \right)\]
To find the locus of their point of intersection, we will solve the two equations in terms of \[x\] and \[y\].
Eliminating \[x\] from the two equations and equating them, we get \[\dfrac{1}{\tan {{\alpha }_{1}}}\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=\dfrac{1}{\tan {{\alpha }_{2}}}\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)\] \[\left( 3 \right)\]
We know, \[\dfrac{\cot {{\alpha }_{1}}}{\cot {{\alpha }_{2}}}=2\Rightarrow \dfrac{\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}=2\]
Multiplying equation \[\left( 3 \right)\] by \[\tan {{\alpha }_{2}}\], we get \[\dfrac{\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)\]
\[\Rightarrow 2\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)\]
On further solving the equation by taking LCM on both sides multiplying by \[\tan {{\alpha }_{2}}\], we get \[2\dfrac{\tan {{\alpha }_{2}}\left( y\tan {{\alpha }_{1}}-a \right)}{\tan {{\alpha }_{1}}}=y\tan {{\alpha }_{2}}-a\]
As we know \[\dfrac{\cot {{\alpha }_{1}}}{\cot {{\alpha }_{2}}}=2\Rightarrow \dfrac{\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}=2\], we get\[4\left( y\tan {{\alpha }_{1}}-a \right)=y\tan {{\alpha }_{2}}-a\]
\[\Rightarrow 4y\tan {{\alpha }_{1}}-4a=y\tan {{\alpha }_{2}}-a\]
Dividing the equation by \[\tan {{\alpha }_{1}}\], we get \[4y-\dfrac{4a}{\tan {{\alpha }_{1}}}=\dfrac{y\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}-\dfrac{a}{\tan {{\alpha }_{1}}}\]
\[\Rightarrow 4y-\dfrac{4a}{\tan {{\alpha }_{1}}}=2y-\dfrac{a}{\tan {{\alpha }_{1}}}\]
\[\Rightarrow 2y=\dfrac{3a}{\tan {{\alpha }_{1}}}\]
Rearranging the above equation, we get \[\tan {{\alpha }_{1}}=\dfrac{3a}{2y}\]
Substituting the value of \[\tan {{\alpha }_{1}}\] in equation \[\left( 1 \right)\], we get \[y=\dfrac{3a}{2y}x+\dfrac{a}{\dfrac{3a}{2y}}\]
\[\Rightarrow y=\dfrac{3ax}{2y}+\dfrac{2y}{3}\]
\[\Rightarrow \dfrac{y}{3}=\dfrac{3ax}{2y}\]
\[\begin{align}
& \Rightarrow 2{{y}^{2}}=9ax \\
& \\
\end{align}\]
We observe that this curve is the equation of a parabola. However, it is not necessary that we will always get a parabola. If we change the angle between two tangents, we will get a different curve. If the two tangents are perpendicular to each other, we will get locus as a straight line.
Hence, the correct answer is a) \[2{{y}^{2}}=9ax\].
Note: We can also solve this question by taking the point of intersection of tangents as any general point and then writing the equation of tangents at the general point.
Complete step-by-step answer:
We have a parabola of the form \[{{y}^{2}}=4ax\]. We have two tangents to the parabola which make angles \[{{\alpha }_{1}}\] and \[{{\alpha }_{2}}\] with the \[x\]-axis such that \[\dfrac{\cot {{\alpha }_{1}}}{\cot {{\alpha }_{2}}}=2\] at their point of intersection.
We know that the equation of tangent of parabola of the form \[{{y}^{2}}=4ax\] with slope \[m\] is \[y=mx+\dfrac{a}{m}\].
If a line makes an angle \[\alpha \] with \[x\]-axis, the slope of the line is \[\tan \alpha \].
So, the two tangents making angles \[{{\alpha }_{1}}\] and \[{{\alpha }_{2}}\] with \[x\]-axis have slopes \[\tan {{\alpha }_{1}}\] and \[\tan {{\alpha }_{2}}\].
The equation of tangent with slope \[\tan {{\alpha }_{1}}\] is \[y=\tan {{\alpha }_{1}}x+ \dfrac{a}{\tan {{\alpha }_{1}}}\].
Rewriting the above equation by dividing by \[\tan {{\alpha }_{1}}\], we get \[\dfrac{1}{\tan {{\alpha }_{1}}}\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=x\]. \[\left( 1 \right)\]
The equation of tangent with slope \[\tan {{\alpha }_{2}}\] is \[y=\tan {{\alpha }_{2}}x+ \dfrac{a}{\tan {{\alpha }_{2}}}\].
Rewriting the above equation by dividing by \[\tan {{\alpha }_{2}}\], we get \[\dfrac{1}{\tan {{\alpha }_{2}}}\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)=x\]. \[\left( 2 \right)\]
To find the locus of their point of intersection, we will solve the two equations in terms of \[x\] and \[y\].
Eliminating \[x\] from the two equations and equating them, we get \[\dfrac{1}{\tan {{\alpha }_{1}}}\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=\dfrac{1}{\tan {{\alpha }_{2}}}\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)\] \[\left( 3 \right)\]
We know, \[\dfrac{\cot {{\alpha }_{1}}}{\cot {{\alpha }_{2}}}=2\Rightarrow \dfrac{\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}=2\]
Multiplying equation \[\left( 3 \right)\] by \[\tan {{\alpha }_{2}}\], we get \[\dfrac{\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)\]
\[\Rightarrow 2\left( y-\dfrac{a}{\tan {{\alpha }_{1}}} \right)=\left( y-\dfrac{a}{\tan {{\alpha }_{2}}} \right)\]
On further solving the equation by taking LCM on both sides multiplying by \[\tan {{\alpha }_{2}}\], we get \[2\dfrac{\tan {{\alpha }_{2}}\left( y\tan {{\alpha }_{1}}-a \right)}{\tan {{\alpha }_{1}}}=y\tan {{\alpha }_{2}}-a\]
As we know \[\dfrac{\cot {{\alpha }_{1}}}{\cot {{\alpha }_{2}}}=2\Rightarrow \dfrac{\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}=2\], we get\[4\left( y\tan {{\alpha }_{1}}-a \right)=y\tan {{\alpha }_{2}}-a\]
\[\Rightarrow 4y\tan {{\alpha }_{1}}-4a=y\tan {{\alpha }_{2}}-a\]
Dividing the equation by \[\tan {{\alpha }_{1}}\], we get \[4y-\dfrac{4a}{\tan {{\alpha }_{1}}}=\dfrac{y\tan {{\alpha }_{2}}}{\tan {{\alpha }_{1}}}-\dfrac{a}{\tan {{\alpha }_{1}}}\]
\[\Rightarrow 4y-\dfrac{4a}{\tan {{\alpha }_{1}}}=2y-\dfrac{a}{\tan {{\alpha }_{1}}}\]
\[\Rightarrow 2y=\dfrac{3a}{\tan {{\alpha }_{1}}}\]
Rearranging the above equation, we get \[\tan {{\alpha }_{1}}=\dfrac{3a}{2y}\]
Substituting the value of \[\tan {{\alpha }_{1}}\] in equation \[\left( 1 \right)\], we get \[y=\dfrac{3a}{2y}x+\dfrac{a}{\dfrac{3a}{2y}}\]
\[\Rightarrow y=\dfrac{3ax}{2y}+\dfrac{2y}{3}\]
\[\Rightarrow \dfrac{y}{3}=\dfrac{3ax}{2y}\]
\[\begin{align}
& \Rightarrow 2{{y}^{2}}=9ax \\
& \\
\end{align}\]
We observe that this curve is the equation of a parabola. However, it is not necessary that we will always get a parabola. If we change the angle between two tangents, we will get a different curve. If the two tangents are perpendicular to each other, we will get locus as a straight line.
Hence, the correct answer is a) \[2{{y}^{2}}=9ax\].
Note: We can also solve this question by taking the point of intersection of tangents as any general point and then writing the equation of tangents at the general point.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE